
IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 1457

PREFENDER: A Prefetching Defender Against Cache
Side Channel Attacks as a Pretender

Luyi Li , Jiayi Huang , Member, IEEE, Lang Feng , Member, IEEE, and Zhongfeng Wang , Fellow, IEEE

Abstract—Cache side channel attacks are increasingly alarm-
ing in modern processors due to the recent emergence of Spectre
and Meltdown attacks. A typical attack performs intentional
cache access and manipulates cache states to leak secrets by
observing the victim’s cache access patterns. Different counter-
measures have been proposed to defend against both general
and transient execution based attacks. Despite their effectiveness,
they mostly trade some level of performance for security, or have
restricted security scope. In this paper, we seek an approach to
enforcing security while maintaining performance. We leverage
the insight that attackers need to access cache in order to
manipulate and observe cache state changes for information
leakage. Specifically, we propose PREFENDER, a secure prefetcher
that learns and predicts attack-related accesses for prefetching
the cachelines to simultaneously help security and performance.
Our results show that PREFENDER is effective against several
cache side channel attacks while maintaining or even improving
performance for SPEC CPU 2006 and 2017 benchmarks.

Index Terms—Security, cache side channel attacks, prefetcher.

I. INTRODUCTION

OVER the last few decades, continuing optimization of
microarchitecture has led to a dramatic increase in its

complexity, which might unfortunately be accompanied by
many potential security vulnerabilities. As a result, the cache
side channel attacks [1], [2] become serious threats to modern
processors. For example, it is possible for Spectre [3] and
Meltdown [4] attacks to steal almost any data in the memory,
by leveraging vulnerabilities of the out-of-order execution and
the speculative execution. More seriously, these two attacks can
threaten most of the modern commercial processors from Intel,
AMD, and ARM. Lots of variants of cache side channel attacks

Manuscript received 14 April 2022; revised 19 February 2023; accepted
9 March 2024. Date of publication 18 March 2024; date of current version
10 May 2024. This work was supported in part by the National Natural Science
Foundation of China under Grant 62204111 and in part by the Shuangchuang
Program of Jiangsu Province under Grant JSSCBS20210003. Recom-
mended for acceptance by S. Kaxiras. (Corresponding authors: Lang Feng;
Zhongfeng Wang.)

Luyi Li is with the Department of Computer Science and Engineering,
University of California San Diego, La Jolla, CA 92093 USA (e-mail:
lul014@ucsd.edu).

Jiayi Huang is with the Thrust of Microelectronics, The Hong Kong
University of Science and Technology (Guangzhou), Guangzhou, Guangdong
510000, China (e-mail: hjy@hkust-gz.edu.cn).

Lang Feng and Zhongfeng Wang are with the School of Electronic
Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China,
and also with the School of Integrated Circuits, Sun Yat-sen University,
Shenzhen, Guangdong 518107, China (e-mail: fenglang3@mail.sysu.edu.cn;
zfwang@nju.edu.cn).

Digital Object Identifier 10.1109/TC.2024.3377891

have also been found in recent years [5], so the defense methods
are urgently needed to enforce the security of the processors.

Cache side channel attacks exploit the cache state changes for
information leakage [6]. For example, the attacker can infer the
cache footprint of the victim program by the time differences
between cache hits and cache misses when accessing the data
[3], [4]. Different countermeasures have been proposed for
either general or transient execution based attacks through iso-
lation [7], conditional speculation [8], stateless mis-speculative
cache accesses [9], noise injection [10], [11], prefetching [12],
[13], etc. However, these countermeasures either incur perfor-
mance overhead, or have limited scope of security, such as
only defending against the attacks conducted cross-core, so they
failed to benefit both security and performance.

In this paper, we propose an approach to defeating the cache
side channel attacks while maintaining or even improving the
performance. During the attack, the attacker obtains the cache
state changes made by the victim by accessing the cache. If
the access patterns of both the attacker and the victim can be
learned, the processor can prefetch the data that can further
change the cache state to confuse the attacker. Besides, effective
prefetching can help performance if the prefetcher is able to
predict the access patterns of the benign programs.

We propose PREFENDER, a prefetching defender to defeat
cache side channel attacks while preserving performance bene-
fits for benign programs. Specifically, three low-cost designs
are proposed, which are called Scale Tracker (ST), Access
Tracker (AT), and Record Protector (RP). Scale Tracker is able
to prefetch the data that the victim may access, by tracking the
target address calculation history of the memory instructions.
Access Tracker can learn the cache access patterns of the attack-
ers and prefetch data for confusion, even if the attackers perform
intentional random accesses. Record Protector can link Scale
Tracker and Access Tracker to prevent noisy instructions and
accesses from affecting PREFENDER, and further enhance the
robustness of PREFENDER. Furthermore, effective prefetching
of PREFENDER also maintains or improves performance. The
contributions of this work are as follows:

• PREFENDER is proposed, where a novel address predic-
tion and a noise preventing approaches for prefetching are
proposed. PREFENDER can prevent wide range of general
access-based cache timing side channel attacks including
both single-core and cross-core attacks, while maintaining
the performance.

• A new approach to analyzing cache access patterns
is proposed. Scale Tacker and Access Tacker are

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0001-5954-0066
https://orcid.org/0000-0003-4011-6668
https://orcid.org/0000-0001-9943-0550
https://orcid.org/0000-0002-7227-4786
mailto:lul014@ucsd.edu
mailto:hjy@hkust-gz.edu.cn
mailto:fenglang3@mail.sysu.edu.cn
mailto:zfwang@nju.edu.cn


1458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 1. The examples of Flush+Reload, Evict+Reload, and Prime+Probe.
The secret can be revealed by the only low (or high) latency eviction cacheline.

designed to realize the runtime analysis for effec-
tive prefetching.

• An approach is proposed to protect PREFENDER from being
affected by the noisy memory instructions and accesses. To
realize this, Record Protector is designed to link the scale
tracker and the access tracker to help identify the cache
accesses from the attackers.

• The detailed experiments show the effectiveness and the
robustness for defeating cache side channel attacks. Be-
sides, PREFENDER also brings the performance improve-
ment, and is highly compatible with other prefetchers.

For the following sections, Section II introduces the back-
ground and the threat model. The related work is discussed
in Section III, and the details of PREFENDER are proposed in
Section IV. Then the experiments are described in Section V.
Finally, Section VI concludes the paper.

II. BACKGROUND AND THREAT MODEL

A. Cache Side Channel Attacks

Cache side channel attacks are to detect the cache state
changes caused by the victim’s memory accesses and further
infer the sensitive information of the victim from these changes.
In a cache side channel attack, a round of attack is typically
made up of three phases. During the first phase, the attacker
initializes the cache states. For example, the attacker usually
uses flush instructions to invalidate the cachelines or loads ir-
relative data to evict the original cachelines. Then, in the second
phase, the attacker does nothing but wait for the victim to be
executed. During the execution, the victim accesses its data
and causes changes in the cache. In the last phase, the attacker
measures which cache state is different from the initialized state
and therefore deduces what data the victim has accessed.

One kind of widely used cache side channel attacks is
the timing-based attack, where the cache states (hit or miss)
can be identified by access latencies. Fig. 1 illustrates three
attacks, including Flush+Reload [2], Evict+Reload [14], and

Prime+Probe [6]. Take Flush+Reload as an example, which is
based on page sharing between the attacker and the victim.
In phase 1, the attacker flushes all the cachelines that may be
accessed by the victim. Each cacheline is called an eviction
cacheline, and they compose an eviction set. In phase 2, the
victim loads the data that are related to the secrets, which is also
called secret-dependent data. In phase 3, the attacker accesses
the eviction set and measures the access latency of each eviction
cacheline. If the attacker detects a low latency, i.e., a cache hit,
the secret might be inferred from the address of this cacheline.
For example, assuming the cacheline size is 64 bytes, if the
victim loads a secret-dependent data array[s×64] in phase
2, where s is the secret. During phase 3, array[768] will
be accessed with a cache hit; the attacker can infer the secret is
s=768/64=12.

Compared with Flush+Reload, Evict+Reload mainly differs
in the way of phase 1. In Evict+Reload, the attacker loads
some irrelative data to evict the cachelines instead of flush
instructions. In contrast, in Prime+Probe, the attacker and the
victim do not share memory pages. Therefore, the attacker has
its own data which maps to the same cache sets with the victim’s
data. In phase 1, the attacker evicts the cachelines by loading its
own data. In phase 2, the victim accesses its data and evicts the
attacker’s data. In phase 3, the attacker re-accesses its data and
detects if there is a high latency, i.e., a cache miss. This cache
miss can reveal the victim’s secret. The three attacks share the
same key idea, which is to leverage the access latency to identify
the secrets.

B. Prefetching

It is widely known that the memory wall is one of the major
bottlenecks of modern processors. One approach to reducing
the memory access latency is prefetching, which refers to pre-
dictively loading data into the cache in advance. If the processor
requests the data later, it will encounter a cache hit and the ac-
cess latency is reduced. This technique is usually implemented
by the hardware module named prefetcher. Such typical ex-
amples include Tagged Prefetcher [15], Stride Prefetcher [16],
Feedback Directed Prefetcher [17], Address Correlation Based
Prefetcher [18], [19], etc.

C. Threat Model

We refer to work [20] to categorize the attacks. The cache
timing side channel attacks that are access-based (types 2 and
4 [20]) are included in our threat model, which contains all the
attacks described in Section II-A. Besides, both single-core and
cross-core attacks are included. In these attacks, the attacker is
able to modify the states of any cachelines (usually the eviction
cachelines) and measure their access latencies. The data at the
eviction cachelines are either shared or conflict between the
victim and the attacker. Besides, the attacker needs and is able
to access multiple eviction cachelines and leverages the timing
difference between their access latencies to infer the secret of
the victim1.

1As each cacheline is not necessarily accessed multiple times in our threat
model, the attack in works Prefetch-guard [10], PrODACT [21], and Reuse-
trap [11] is out of the scope.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1459

TABLE I
COMPARISONS WITH RELATED WORK IN THREAT MODEL, APPROACH, AND PERFORMANCE OVERHEAD

Conditional NDA SpecShield InvisiSpec SafeSpec MuonTrap SpecPref Catalyst StealthMem DAWG CEASER RPcache SHARP
PREFENDER

Speculation [8] [22] [23] [9] [24] [25] [26] [27] [28] [7] [29] [30] [31]
Threat Models Speculative Execution Attacks Cache Timing Side Channel Attacks

Approaches Speculation Restriction Shadow Structures to Hold Speculative Data Cache Partition New Cache Replacement Policy Prefetch
Performance

13%-54% 11%-125% 10%-73% 21%-72% -3% 4% 1.17% 0.70% 5.90% 15% 1% 0.30% 0%
-1.69%

Overhead /-6.28%

III. RELATED WORK

A. Cache Side Channel Attacks

Cache side channel attack is one of the most powerful
micro-architectural side channel attacks, where the attacker can
directly detect the cache states and obtain accurate timing infor-
mation for inferring the secrets. Many researchers have studied
various types of effective attack methods.

Kosher [32] firstly mentioned that the timing difference in the
cache can be exploited to extract cryptographic secrets. Osvik
[6] proposed Evict+Time and Prime+Probe methods to attack
the AES algorithm [33]. In 2014, Yarom [2] proposed a more
powerful and more fine-grained method, called Flush+Reload.
This method utilizes the flush instruction supported by some
architectures, for example, clflush in x86. Moreover, since it
is based on shared memory, it has much lower noise and finer
granularity, e.g., a single cacheline. The Flush+Reload has more
variants, one of which is Evict+Reload [14]. The Evict+Reload
is applicable to devices that do not support a flush instruction
because it replaces the flush behavior with the cache eviction.

Research on cache side channel attacks continues to spring
up, especially after Spectre [3] and Meltdown [4] attacks were
reported. These attacks exploit one of the most important
microarchitectural optimizations, speculation, to get sensitive
data. They and their variants show that many critical microar-
chitectural components, including Branch Target Buffer (BTB)
[3], Return Stack Buffer (RSB) [34], Floating Point Unit (FPU)
[35], Page-table Entry [5], Intel SGX enclave [36], may inad-
vertently leak their internal states, including potential secrets
while running. However, even if these attacks are based on
different hardware components, most of them still leave the
secrets in the cache and use cache side channel attacks such as
Flush+Reload, Evict+Reload, Prime+Probe, etc., as mentioned
before, to extract the information. Therefore, PREFENDER has
a broad defense scale because it is able to defend against the
cache side channel attacks that exploit the timing difference of
cache access latency, including both traditional and transient
execution based ones.

B. Microarchitectural Defenses

Many countermeasures have been proposed to defend against
cache side channel attacks, including software and hardware ap-
proaches. Software defenses are more compatible with current
platforms, but they may not fundamentally defeat the attacks,
and they can incur high performance overhead. Therefore, mi-
croarchitectural defenses are further proposed in many studies.

The comparisons between PREFENDER and related work are
shown in Tables I and II. Cache side channel attacks can be
combined with transient speculative execution for data leakage,

such as Spectre [3] attacks. To mitigate cache side channel
attacks caused by transient execution, some of the prior work
restricts speculation by constraining the execution of specu-
lative loads, such as Conditional Speculation [8], NDA [22]
and SpecShield [23]. They seek to identify the dangerous load
instructions that can be potentially exploited by attackers and
then delay their execution until all the past instructions are
guaranteed to be safe. However, this method may lead to high
overhead if they fail to accurately detect the dangerous loads.
Another category, such as InvisiSpec [9], SafeSpec [24] and
MuonTrap [25], designs a shadow structure to temporarily hold
the data brought by speculative loads during transient execution,
but they require many modifications to the existing hardware
systems. Although SafeSpec [26] achieves a 3% performance
improvement by avoiding cache pollution, its threat model is
attacks on transient speculative execution, which are different
from our threat model on cache timing side channel attacks.
SpecPref [26] also aims at speculative execution vulnerabilities
and prefetchers, but the role of the prefetchers in SpecPref is
the source of the data leakage instead of the way of defense,
which is a different threat model.

The above defenses only prevent data leakage caused by
transient execution. They are ineffective in defending against
other traditional cache side channel attacks. For the traditional
ones, some new cache policies were introduced. Catalyst [27]
and StealthMem [28] partition the cache into different regions
for private data and shared resources, respectively. For Catalyst
[27], software modifications are needed. DAWG [7] achieves a
higher granularity, which dynamically partitions cache ways to
avoid cache sharing among different security domains. How-
ever, these methods require programmers to rewrite the source
codes to flag the sensitive data. In contrast, the key idea of
CEASER [29] and RPcache [30] is to randomize the cache
mapping algorithm in order to prevent the attacker from evicting
the cache. SHARP [31] also designs a new cache replacement
policy to prevent the eviction and flush from forcing out dedi-
cated cachelines. It requires operating system support to handle
interrupts generated by alarm counters and does not defend
against single-core attacks in the private cache. Indicated in
Table I, almost all the approaches for cache timing side channel
attacks pay some level of performance for the security strength,
or are not able to defeat general cache side channel attacks. To
sum up, it is always a challenging task to design both efficient
and effective defenses for both security and performance.

Besides the above studies with different approaches from
PREFENDER, there are also multiple studies using prefetchers
for defense, as summarized in Table II. Prefetch-guard [10],
PrODACT [21] and Reuse-trap [11] propose several methods
to detect the spy and leverage prefetching to obfuscate the
spy based on previously recorded information, sharing the same

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

TABLE II
COMPARISONS WITH RELATED WORK USING PREFETCHING. (‘‘-’’ STANDS FOR THAT THE INFORMATION IS

NOT MENTIONED IN THE CORRESPONDING WORK.)

Prefetch-guard [10] PrODACT [21] Reuse-trap [11]
Disruptive

BITP [13] PREFENDER
Prefetching [12]

T
hr

ea
t

M
od

el
s

Access-Based Cache Attacks (Types 2 and 4 [20])
Flush+Reload

Single-Cacheline
√ √ √

- - ×
Multi-Cacheline × × × - -

√

Evict+Reload
Single-Cacheline

√
-

√
-

√ ×
Multi-Cacheline × - × -

√ √

Prime+Probe
Single-Cacheset

√ √ √
-

√ √

Multi-Cacheset × × × √ √ √

Timing-Based Cache Attacks (Types 1 and 3 [20])
Evict+Time × × × × √ ×

Cache Collision Attack
Single/Cross-Core Attacks

Single-Core
√ √ √ √ × √

Cross-Core
√ √ √ √ √ √

Te
ch

ni
qu

es

Considering
× × √ × × √

Random Access
Pattern
Defense

Cacheline Cacheline Cacheline Cacheset Cacheline Cacheline
Granularity

Handling Benign × × × × √ √
Noise Accesses

No Software × × × √ √ √
Modification

Pe
rf

or
m

an
ce

&
H

ar
dw

ar
e

Hardware
Overhead

High High High Low Low Low
One conflict miss tracker
and one flush instruction

tracker per cache set.

One conflict
miss tracker per

cache set.

One reuse
distance counter

per cache set.

One marked bit per cache
set, randomization and

set-balancer logic.

BACK-INV
command
tracker.

ST+AT+RP,
detailed in

Section V-E.

Performance
- - - 0% (SPEC 2006) 1.10% (SPEC 2006)

1.69% (SPEC 2006)
Improvement 6.28% (SPEC 2017)

idea with PREFENDER. However, their threat model is different
from ours. They focus on covert channel attacks. One key
feature their defenses are based on is that the attacker needs to
access one cacheline multiple times. As this assumption is not
included in our threat model, they cannot defeat the targeting
attacks of this paper. In addition, the attacker in our threat model
might access the caches randomly to mislead the prefetchers,
and this is not handled by the studies [10], [11], [21]. Moreover,
no techniques are proposed in these studies to handle the noise
from the benign memory accesses. These studies need software
modifications and can be intrusive. For hardware consumption,
since they need one tracker for each cache set, the hardware
overhead can be highly increased with the growth of the cache
size. Besides, Reuse-trap needs to know the victim’s process
ID in advance to record the victim’s cache misses, which may
cause software modifications. Finally, they still trade some level
of performance and fail in gaining performance improvement
that can be achieved with prefetching. Disruptive Prefetching
[12] also modifies the prefetchers to defeat cache side channel
attacks. But it manipulates in a granularity of cacheset instead of
cacheline, and only Prime+Probe is discussed, so the security
is restricted. Meanwhile, it may cause cache pollution due to
its random prefetching policy. BITP [13] prefetches the data
when identifying cross-core back-invalidation-hits in multicore
systems. So, it targets cross-core attacks but not single-core
attacks. In contrast, PREFENDER can also be applied to single-
core attacks as it is able to filter the benign memory accesses in
the single-core executions. Both BITP and PREFENDER improve
performance, and PREFENDER achieves higher improvement.

Compared with related work, PREFENDER is a completely
hardware-based and resource-efficient method without

Fig. 2. The overall design architecture of our system.

modifying any policy of speculative execution or cache in
modern processors. It can effectively defend against the
multi-cacheline (cacheset) access-based cache attacks, as well
as single-core and cross-core attacks. It also considers the
random accesses from the attacks and the noise from the benign
accesses, and the defense granularity is each cacheline. On the
premise of ensuring security, it further achieves a performance
enhancement better than prior work through accurate runtime
analyses and well-designed hardware prefetching strategies.

IV. PREFENDER DESIGN

In this section, the overview of the proposed PREFENDER

shown in Fig. 2 is first introduced, and the details of Scale
Tracker (ST), Access Tracker (AT), and Record Protector (RP)
are then elaborated.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1461

Fig. 3. The example of the defenses against Flush+Reload attacks (the
number near an arrow represents the access time, and the number inside
each rectangle represents the first time when the corresponding cacheline is
accessed).

A. Overview

According to Section II-A, three phases need to be performed
by a cache side channel attack so the attack can be defeated by
interfering with one of the phases. PREFENDER is designed in
each L1Dcache for interfering with the attacks by prefetching
the eviction cachelines. Specifically, PREFENDER includes Scale
Tacker (ST) and Access Tacker (AT) to interfere with the second
and third phases, respectively. Record Protector (RP) can fur-
ther protect PREFENDER from being interfered with by the noisy
memory instructions and accesses, and enhance the robustness.
A basic prefetcher (Basic Pref. in Fig. 2) is also supported, such
as the Tagged or Stride prefetcher. The scale tracker, the access
tracker, and the basic prefetcher are able to prefetch data, while
the record protector can increase the accuracy of predicting the
eviction cachelines. Note that the basic prefetcher can only help
with performance, while the scale tracker, the access tracker,
and the record protector can enforce security and also improve
performance to some extent.

The scale tracker aims at predicting the eviction cachelines
that might be accessed by the victim program during phase 2.
The prediction is based on the arithmetic calculation histories
of the victim instructions, which are stored in the Calculation
Buffer. The scale tracker will predict and prefetch additional
eviction cachelines after a victim instruction loads the data
into an eviction cacheline in phase 2. The prefetched eviction
cachelines can mislead the attacker since the attacker is unable
to distinguish them from the cacheline loaded by the victim
instruction. An example is shown at the top of Fig. 3.

The access tracker aims at predicting the attacker’s access
patterns of the eviction cachelines for measuring the access
latency during phase 3. The access tracker leverages the insight
that a few load instructions are intensively used for the attack
and stores the attacker’s access patterns in the Access Buffer.
An example is shown at the bottom of Fig. 3, where the access
tracker prefetches the eviction cacheline before the attacker ac-
cesses it and measures the access latency. This can also mislead
the attacker.

Although the access tracker can interfere with phase 3 to
mislead the attacker, since phase 3 is much longer than phase

Fig. 4. The example of the defenses against cross-core Flush+Reload attacks
(the number near an arrow represents the access time, and the number inside
each rectangle represents the first time when the corresponding cacheline is
accessed).

2, there is more noise during the phase, which may affect the
prediction of the access tracker. Because phase 2 is performed
by the victim, the victim’s access patterns learned by the scale
tracker are regarded as trusted patterns, and can help correct the
prediction of the access tracker. The record protector is designed
to link the scale tracker and the access tracker to prevent the
noise from affecting the access tracker. The record protector
can record the victim’s cache access prediction of the scale
tracker into the Scale Buffer. If the attacker’s access pattern in
the access buffer matches a predicted victim’s cache access in
the scale buffer, the corresponding information in the access
buffer is protected from being interfered with by the noise, and
the prefetching is guided by the records in the scale buffer.

Note that ST and AT also work for cross-core attacks. An
example is shown in Fig. 4. In this example, the programs of
the attacker and the victim are on different cores with different
L1D caches, but they share the same last level cache (LLC).
For ST, after the attacker flush the eviction cachelines, when
the victim accesses the data on another core, ST will prefetch
the additional eviction cacheline similar as Fig. 3, both in vic-
tim’s L1D cache and LLC. For phase 3, the cross-core attack
originally can identify the only LLC hit to infer the sensitive
information, but with ST, there are two LLC hits and the attacker
is not able to distinguish which one is accessed by the victim’s
program. For AT, similar as the case of single-core attack, AT
can directly prefetch the eviction cachelines into both attacker’s
L1D cache and LLC in phase 3. As the attacker keeps accessing
the eviction cachelines, AT will keep prefetching, which can
prefetch the cacheline in LLC accessed by the victim to L1D
cache, and can directly mislead the attacker.

Since the key idea of the scale tracker, the access tracker,
and the record protector is to correctly learn cache access pat-
terns for prefetching, effective prefetching on benign loads can
also improve performance while enforcing security. However,
there are four major challenges for effective prefetching for
PREFENDER.

C1. During phase 2, the victim may only access one evic-
tion cacheline. Even though there are other eviction
cachelines that may also be accessed, they may not

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

be simply contiguous. How to effectively predict the
access pattern given limited accesses (even single ac-
cess) is challenging, which we overcome with the scale
tracker.

C2. During phase 3, the eviction cachelines might be ran-
domly accessed by the attacker. This can bypass some
prefetchers such as Stride prefetcher. Predicting the
eviction cachelines based on a random access pattern
is challenging, which is tackled by the access tracker.

C3. During phase 3, there might be noisy memory instruc-
tions executed, so that the records of the attacker’s
access patterns in the access buffer are overwritten by
the noisy instructions. In this case, the access tracker
might be bypassed. We tackle this problem by using the
record protector.

C4. During phase 3, if some non-eviction cachelines are
also accessed by the same attacking instruction, the
prefetching of the access tracker can be affected by
these noisy accesses. We tackle this by using the record
protector. Note that the challenge C3 is related to over-
writing the attacker’s recorded access behaviors, while
the challenge C4 is about extra misleading behaviors.

B. Scale Tacker

The prediction of the Scale Tracker (ST) is based on the target
address calculation of the victim load. For example, if the
load’s target address is calculated by 128×i+192, where i
is an integer variable, the target address can only be 192, 320,
448, etc. After the virtual address is translated to the physical
address, if paddr is the target physical address for this time, it
can be deduced that paddr-128, paddr, paddr+128, etc.,
may also be accessed by this load if they are in the same page.
In this way, we can predict the access pattern of the victim
instruction in phase 2. The main goal is to learn the 128 as
in the example, which is called the scale in our work.

The target address of a load is usually stored in the registers,
so the scale tracker needs to track how the register values are
calculated. This can be realized by recording all the calculation
history of each register, but it can incur unacceptable hardware
consumption. Therefore, only addition and multiplication (in-
cluding subtraction and shifting) are considered, as they are
widely used in the calculation, and their calculation history can
be tracked by using only two values for each register.

We use two values to track the history for each register r:
a fixed value fvar and a scale scr, which are stored in the
calculation buffers. The fvar is needed to help track the scale,
and it records the calculation result if all the calculations of
register r only depend on constant values (immediate numbers).
If the value of r depends on some variables such as the loaded
memory values, fvar is not applicable (NA).

The cache access pattern predicted by the scale tracker
mainly depends on the scale scr. Usually, array access ad-
dress in a loop is calculated as base+scale×i (e.g.,
base+128×i), where base is the base address and i is
an integer variable. The above calculation will be propagated
through some registers, and the final calculation result is stored
in a register and used as the target address of a load to access

TABLE III
THE RULES TO CALCULATE fvard AND scrd. (rd IS THE DESTINATION

REGISTER; ‘‘-’’ IS NOT APPLICABLE. †THE RULE IS ALSO FOR

SUBTRACTION WHEN + IS REPLACED BY −. ‡THE RULE IS ALSO FOR

SHIFTING WHEN × IS REPLACED BY >> OR <<)

Conditions Results
Instruction Arg. a Arg. b fvars0 fvars1 fvard scrd

load rd a
imm0 - - - imm0 1

imm(rs0) - - - NA 1

add rd a b†

rs0 imm0 NA - NA scrs0
rs0 imm0 Valid - fvars0 + imm0 1
rs0 rs1 Valid Valid fvars0 + fvars1 NA
rs0 rs1 NA Valid NA scrs0
rs0 rs1 Valid NA NA scrs1
rs0 rs1 NA NA NA min(scrs0 , scrs1 )

mul rd a b‡

rs0 imm0 NA - NA scrs0 × imm0

rs0 imm0 Valid - fvars0 × imm0 1
rs0 rs1 Valid Valid fvars0 × fvars1 NA
rs0 rs1 NA Valid NA scrs0 × fvars1
rs0 rs1 Valid NA NA fvars0 × scrs1
rs0 rs1 NA NA NA scrs0 × scrs1

Otherwise - - - - NA 1

the array. One task of the scale tracker is to track the scale by
propagating scales and fixed values from registers to registers
during the calculations. Assuming the target address addr is
stored in register r, we can obtain the scale scr related to r.
When one load is executed even for a single time, the scale
tracker can predict that the nearby cachelines (addr ± scr) may
also be accessed by the same load. This is the access pattern
tracked by the scale tracker.

The scale tracker can also support more complicated access
patterns, such as 128×i+32×j+imm, where i and j are
variables as the indices and imm is an immediate number. In
this example, given an imm, if there is a pair of i and j
makes the result to be 652, there may be another pair (e.g.,
i increments 1) to make the result as 652+128. The 128 can
be scr in this calculation. Similarly, 32 and any multiples of
them like 256, 512, etc., can also be scr. Note that an access
pattern that involves multiplications of several variables (such
as (128i0i1i2+32j0×16j1)×(48k0+imm) ) can also be
handled by propagating the scales and the fixed values during
the calculations.

The proposed rules for calculating scr (and fvar, which can
help calculate scr) are illustrated in Table III. When a program
is started, the fixed and scale values are initialized to NA and
1, respectively. During the execution of the program, the fixed
value and scale of the destination register rd are calculated
according to the operand and the propagated values of the
source registers.

For data movement instructions, if an immediate number is
loaded to rd, fvard is set to the number. If a value is loaded
from memory to rd, fvard and scrd are reinitialized since we
conservatively regard the loaded value as an unknown variable.

For addition, when fvard is calculated by one immediate
number and one register rs0, if rs0’s fvars0 is NA, scrd is
the same as scrs0 since adding the immediate number as the
offset has no effect on the scale. If fvars0 is valid, fvard is
the addition of fvars0 and the immediate number since both
are fixed values. When adding two registers, if only one of them
has a valid fixed value, the scale of the destination register is
the same as the scale of the source register without a valid fixed
value. If neither of the source registers has a valid fixed value,
the scale of the destination register can be the minimum scale

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1463

Fig. 5. (a) A pseudo code example for accessing array
[secret×0x200], where arr_addr is an immediate number that
represents the address of the first element in array. (b) The scales (sc) and
the fixed values (fva) in the access buffer, where each value is set according
to the instruction with the same color and the values indicated by the arrows.

of the two registers. The reason is that when the values of two
registers are added, both scales can be used as the new scale.
Using the minimum one can reduce the possibility of making
the scale larger than a page.

For multiplication, the calculations of fvard and scrd are
similar to those of addition, except the consideration of multi-
plicative factors due to multiplication. If any other calculations
are involved, to be conservative, the destination register of the
calculation is reinitialized.

When an instruction load rd imm(rs) or the equivalent
instruction is executed, assuming the target address for this time
is addr′, then addr′ ± scrs are the candidate prefetching ad-
dresses. Once scrs is larger than the cacheline size and smaller
than the page size, the candidate addresses that are not currently
in the L1Dcache are prefetched. We conservatively assume that
all the load instructions might be the victim’s instructions that
are vulnerable. Therefore, the scale tracker is applied to all
the load instructions. Although all loads are considered, the
defense is performed when the target addresses are calculated
by addition and multiplication and the scales are larger than the
cacheline size. This implies that the prefetching is performed
when the loads are likely from phase 2 of the attacks instead
of arbitrary loads, and this can mitigate the potential cache
pollution. For implementation, since the scale tracker prefetches
data in the same page, the bitwidth for storing and calculating
fvar and scr can be small (Section V-E).

An example is shown in Fig. 5. The pseudo code in Fig. 5(a)
accesses array[secret×0x200] at line 7. For Lines 1-2,
the instructions load the secret’s address and the secret from the
memory to r0 and r1, respectively. Therefore, the values of r0
and r1 are regarded as variables and fva of them are NA. Lines
3-4 load the immediate numbers to r2 and r3, which makes the
fva of r2 and r3 be arr_addr and 0x200, respectively. Next,
line 5 multiplies r1 (secret) and r3 (0x200) and stores the
result to r4. According to Table III, since r1’s fva is NA and
r3’s fva is 0x200, the sc of r4 is 0x200×1, and fva of r4 is
NA. For line 6, the r2 and r4 are added to r5, which makes sc
of r4 directly propagated to r5 since r2 has a valid fva. Finally,
when the load of line 7 is executed, the scale tracker will
prefetch the data at (target address)±scr5, which are
arr_addr+secret×0x200±0x200. In this case, assume
secret is 12 at this time, there are at least 2 more eviction

Fig. 6. An example of the access buffer.

cachelines in the cache, which can mislead the attacker to get
the wrong secret value 11 or 13.

C. Access Tracker

For phase 3, the attacker needs to time all the eviction cache-
lines to get the access latencies. Therefore, Access Tacker (AT)
is proposed to interfere with phase 3 to further mislead the
attacker. The goal of the access tracker is to learn the attacker’s
access pattern in phase 3, and prefetch the eviction cachelines
before the attacker times them.

However, according to challenge C2, attackers may time the
eviction cachelines in a random order to bypass prefetchers such
as Stride prefetcher. This increases the difficulty of learning
the access patterns. It is found that in common cases, the at-
tacker’s memory accesses in phase 3 are only associated with
a few load instructions. This can help the learning of the
access patterns by recording the access history of each load
instruction separately.

For the access tracker, there is a set of access buffers, each
of which is associated with a load instruction and records
the target block addresses accessed by the associated load.
The access buffers can help the access tracker learn the access
patterns of the associated load instructions. For each load,
the access pattern is estimated as a stride access—an arith-
metic sequence with a constant difference, which is estimated
as the minimum difference between block addresses in the
associated buffer.

The microarchitecture of the access buffer is shown in Fig. 6.
Each buffer maintains a register for storing the instruction ad-
dress InstAddr of the associated load. For each entry of a
buffer, the block address BlkAddr accessed by the associated
load is recorded. There is also a register in each buffer, which
stores the minimum difference DiffMin between two block
addresses among all the entries. Each register or entry of an
access buffer has a valid bit for indicating if the data is valid
or not. All valid bits are set to 0 upon the reset of the buffer.
Note that we discuss the conceptual idea in this section. For

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

implementation, we do not need to store a complete block
address in each entry (Section V-E).

Four stages are involved in the flow of the access tracker:
1 Buffer Allocation: When a load accesses the cache each

time, its instruction address (the value in the program counter)
is compared with the InstAddrs to find the associated access
buffer, which is then activated. If there is no associated buffer,
an empty buffer is allocated to this load. If there is no empty
nor associated buffer, one buffer is selected by the least recently
used (LRU) replacement policy for allocation. For example, in
Fig. 6, when the loadwith InstAddr 0x8008 accesses the
cache, associated Buffer[0] is activated. In contrast, when the
load with InstAddr 0x8018 accesses the cache, no buffer
is associated, so Buffer[1] is selected to allocate this load by
LRU policy.

2 Entry Updating: In the activated buffer, if the BlkAddr
of the accessed data is not recorded, a new entry is selected
to store this BlkAddr. If all the entries are occupied, LRU is
applied to find the entry for this BlkAddr.

3 DiffMin Updating: The access tracker calculates
DiffMin of a buffer when the buffer is activated and the
number of valid entries of this buffer surpasses a threshold (such
as 4). The number of entries of each buffer is set to be small
(such as 8) to reduce the hardware complexity. DiffMin can
be used to estimate the difference between each two addresses
to be accessed by the attacker in phase 3.

4 Data Prefetching: After the number of valid entries in a
buffer surpasses a threshold (such as 4), each time this buffer
is activated, candidate prefetching addresses are calculated. If
BlkAddr′ is the block address of the current load, the candi-
date prefetching addresses are BlkAddr′± DiffMin. Then,
the access tracker checks if these addresses exist in the activated
buffer, and prefetches one of them that is not in the activated
buffer nor in the L1DCache. For example, assuming the cache-
line size is 256 bytes, in Fig. 6, the colored cachelines’ block
addresses are recorded in the buffer entries, where the cache-
lines and their corresponding block addresses have the same
color. When load with InstAddr 0x8008 accesses the
cache, Buffer[0] is activated. The latest block address 0x1C00
is stored in the buffer, and DiffMin is updated to 0x300 as
it is calculated by |0x1F00-0x1C00|. At this moment, the
access tracker predicts that the eviction cachelines are 0x1C00
+ 0x300×k, where k is an integer. The red margins in Fig. 6
indicate the eviction cachelines that are not currently accessed.
In this case, the candidate addresses are 0x1C00±0x300. As
0x1C00+0x300 is already in the buffer, 0x1C00-0x300 is
finally prefetched by the access tracker (indicated by the arrow
near 4 ).

In this way, the access tracker can learn the access patterns of
the actively executed load, and prefetch the data accordingly
to mislead the attacker. We conservatively assume that all the
loads might be leveraged by the attacker, so the access tracker
is applied to all of them. The possibility of associating the buffer
with the attacker’s load can be increased by increasing the
number of the buffers. Note that the access tracker (or the scale
tracker) only prefetch one cacheline for each load execution in
order to reduce the risk of incurring performance overhead and

avoid additional hardware complexity. Although all loads are
considered, the access tracker finally prefetches when a load
is frequently executed in a time interval, which is the access
pattern of the attack’s phase 3. Therefore, prefetching happens
when the loads are likely from the attacks instead of arbitrary
loads, and the potential cache pollution is mitigated.

D. Record Protector

The access tracker can defeat the side channel attacks by
prefetching the data that are predicted to be accessed by the
attackers in phase 3. However, in practice, two scenarios (chal-
lenges C3 and C4) might bypass the access tracker.

• Challenge C3: In phase 3, between two eviction cacheline
accesses of the attacker’s load, there might be other
benign memory access instructions executed, which are
noise for the access tracker. The access buffer associated
with the attacker’s load can be occupied by a noisy
instruction. According to the access tracker’s policy, this
noisy instruction will initialize the buffer and evict the
attacker’s information. In this case, the access tracker may
fail to prefetch the eviction cachelines to defeat the attack.

• Challenge C4: In phase 3, if the attacker accesses the non-
eviction cachelines, the access tracker will calculate wrong
DiffMin. These accessed cachelines are also noise for
the access tracker. For example, the BlkAddrs stored
in the access buffers are 0x8000, 0x8200, 0x8400,
and 0x8600, which are all the eviction cachelines. The
DiffMin is 0x200 in this case. However, once a non-
eviction cacheline with BlkAddr=0x8100 is accessed
by the same load, DiffMin will be changed to 0x100.
This can mislead the access tracker to prefetch the cache-
lines that are not the eviction cachelines, and the attacks
can bypass the access tracker’s defense.

To tackle the above two challenges, Record Protector (RP) is
proposed, which can link the scale tracker and the access tracker
to increase the robustness of PREFENDER, as shown in Fig 2.
When a victim load accesses the cache, assuming register r
stores the target address, the scale tracker will prefetch the data
according to scr. Meanwhile, the record protector will store
scr and the block address BlkAddrr of this access’s target
address to the scale buffer. Each time when the attacker’s load
accesses the cachelines for the timing measurement in phase 3,
the block address BlkAddr’ of this access is checked with
all the sci and BlkAddri pairs in the scale buffer, where i is
the index of the entry. If (BlkAddr’-BlkAddri)%sci=0,
it is estimated that this access is the access to the eviction
cachelines. Therefore, the associated access buffer is protected
so that it cannot be directly replaced by LRU, and this tackles
challenge C3. Meanwhile, upon protection, the prefetching is
guided by sci but not DiffMin, which can protect PREFENDER

from being affected by the non-eviction cacheline records in the
access buffer, and challenge C4 is tackled.

An example of the flow of the record protector is shown
in Fig. 7, and the detailed policy of the record protector is
elaborated as follows, where 3 stages are involved.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1465

Fig. 7. An example of the flow of the record protector. (The underlined
instructions access the eviction cachelines; each red margin is at the candidate
address by the access tracker’s policy; each red block is at the candidate
address by the record protector’s policy.)

1 Scale Recording: When the victim accesses the eviction
cacheline, the scale tracker uses the scale sc′ in the calculation
buffer for prefetching (Section IV-B). At the same time, the
record protector records sc′ and the block address BlkAddr’
of the target address to the scale buffer, as shown in step 1 of
Fig. 7(a). The records in the scale buffer represent the pattern
of the possible eviction cachelines. They can guide the access
tracker to avoid being affected by noisy accesses, which is
discussed in the later stages.

However, one pattern might be a subset of another pattern.
If so, to reduce the redundancy, only the pattern with the larger
scale is recorded. For example, in the step 1 of Fig. 7(a), r1
is calculated by 0x400×i+0x200, and the target address is
0x1000 for this time. In this case, sc′ =0x400 and BlkA-
ddr’=0x1000, so the pattern is S′ ={... 0x0c00, 0x1000,
0x1400, ...}. For Entry 1 of the scale buffer, sc1 =0x100
and BlkAddr1=0x2000, so the pattern is S1 ={... 0x1f00,
0x2000, 0x2100, ...}. Since S′ ⊂ S1 (which means sc′ >
sc1), all the possible eviction cachelines in S′ are also in
S1. In this case, only S′ needs to be kept for reducing
redundancy, and Entry 1 is replaced by sc′ and BlkA-
ddr’. In detail, assuming the scale and the block address
related to the current load are sc′ and BlkAddr’, when
(BlkAddr’−BlkAddri)%min(sc′, sci) = 0 for Entry i of
the scale buffer, only if sc′ > sci, Entry i will be updated by
sc′ and BlkAddr’.

2 Protection Status Updating: In phase 3, each time
when the attacker’s load accesses the cache, BlkAddr’ of
this load’s target address is checked with all the records (sci
and BlkAddri) in the scale buffer. If BlkAddr’ matches
one of the recorded patterns, which means (BlkAddr’-
BlkAddri)%sci=0, we say BlkAddr’ hits the scale buffer.
When a cache access hits the scale buffer, it is estimated that
the load of this access is the attacker’s load in phase 3.
Therefore, upon the hit, the hit sci and BlkAddri are copied

to the protected scale registers in the associated access buffer,
and this associated access buffer is marked as protected. With
the record protector, the LRU policy in the access tracker for
access buffer replacement is only applied to the unprotected
access buffers. By using the scale buffer to predict which load
is from the attacker, and protect its associated access buffer, the
access buffer will not be replaced by noisy loads. In this way,
challenge C3 is tackled.

For example, in the step 2 of Fig. 7(a), load accesses
address 0x2400, which corresponds to an eviction cacheline.
Since it hits the scale buffer, the associated access buffer is
marked as protected by setting the “Buffer Protected Flag” as
1. Scale 0x400 and block address 0x1000 are also copied to
the protected scale registers.

3 Protected Prefetching: Besides tackling challenge C3
by protecting the access buffers, challenge C4 can be tackled
by prefetching data according to the scales in the scale buffer.
Each time a load’s target block address BlkAddr’ is stored
into the access tracker, if it hits the scale buffer or the protected
scale, the access tracker will use the hit scale schit to prefetch
data, i.e., the access tracker’s candidate prefetching addresses
are BlkAddr’±schit. Otherwise, the candidate prefetching
addresses are calculated by the access tracker’s policy in Sec-
tion IV-C. So, the noisy accesses of the attacker’s load have
much lower effects on the defense.

An example is the step 3 of Fig. 7(a). The load accesses
address 0x2400. Although DiffMin in the associated buffer
is 0x200, the prefetching is performed based on the hit scale
0x400 in the scale buffer. As a result, one of the candidate ad-
dresses 0x2400±0x400 not in the access buffer is prefetched.
If the hit scale buffer entry is replaced later so that the BlkA-
ddr’ no longer hits the scale buffer, the associated access
buffer’s protected scale will be checked instead. If there is a
hit like the case in Fig. 7(b), the prefetching is still performed
according to the hit scale 0x400. For a protected access buffer,
once the number of the prefetching using the hit scale exceeds
a threshold or the buffer stays untouched for a time threshold,
the access buffer is set back to unprotected status, as shown in
Fig. 7(b).

In conclusion, the record protector can help the access tracker
tackle challenges C3 and C4 by protecting the access buffers
and performing prefetching based on the scale tracker’s infor-
mation, respectively. We still conservatively assume that all the
loads might be the victim’s and the attacker’s instructions, so
the record protector is applied to all of them. For implemen-
tation, since the access buffer stores the block addresses, the
bitwidth for the modulus calculation can be small enough to be
practical (Section V-E).

V. EVALUATION

A. Experimental Setup

In our experiments, gem5 simulator [37] is used, where
the baseline configuration contains a 2GHz x86 out-of-order
CPU with a 32KB L1Icache, a 64KB L1Dcache, and a 2MB
L2cache. There are 4 miss-status handling registers (MSHRs),
each of which can merge at most 20 requests to the same

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 8. The results of different attack methods with different challenges. (“PREFENDER” means that the scale tracker, the access tracker, and the record
protector are all applied. Note that for PREFENDER-ST, the latency results of array indices 64-66 are the same in (a)-(c).)

line. For security analysis, we test different Spectre attacks us-
ing Flush+Reload, Evict+Reload and Prime+Probe. Challenges
C1-C4 are involved based on these attacks. For performance
analysis, SPEC CPU 2006 and 2017 benchmark suites [38],
[39] are evaluated. Based upon the baseline, PREFENDER can
include different basic prefetchers, including PREFENDER only,
PREFENDER with a Tagged prefetcher [15], and with a Stride
prefetcher [40]. Note that the priority of PREFENDER’s prefetch-
ing is higher than basic prefetchers for timely defense.

B. Security Evaluation

Different side channel attacks are used to evaluate the se-
curity effectiveness of PREFENDER, and the results are shown
in Fig. 8. We first evaluate without noisy memory instructions
and noisy accesses (i.e., without challenges C3 and C4), and the
results are shown in Fig. 8(a)–8(c). For Flush+Reload, without
applying PREFENDER, the attacker can infer the secret value
by obtaining the only cache hit when accessing the eviction

cachelines of the array in phase 3. When the Scale Tracker
(ST) is applied, the scale tracker is able to introduce addi-
tional misleading cache hits on eviction cachelines, according
to the calculation history. Besides, by learning the attacker’s
access pattern, the Access Tracker (AT) successfully predicts
the accesses of the phase 3, and confuses the attacker by in-
troducing the cache hits. When both the scale tracker and the
access tracker are implemented, their effects on cachelines are
overlapped. Similar results are also obtained when performing
Evict+Reload attack. For Prime+Probe, the attacker infers the
secret by the only cache miss. When the scale tracker is applied,
more eviction cachelines are prefetched in phase 2, which in-
curs more cache misses. When the access tracker is applied,
all eviction cachelines are prefetched so that the attacker can
only obtain cache hits when accessing the array. This also mis-
leads the attacker. When both the scale tracker and the access
tracker are applied, only the effect of the access tracker remains
since the access tracker prefetches (phase 3) after the scale
tracker (phase 2).

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1467

Fig. 9. The number of the prefetches performed under different attack methods with different challenges. (PREFENDER-ST+AT is applied in (a)-(c), and
PREFENDER with the scale tracker, the access tracker, and the record protector is applied in (d)-(f). Note that the prefetches of the record protector refer to
those of the access tracker guided by the record protector.)

When there are noisy memory instructions during phase 3
(challenge C3), the access buffers of the access tracker can
be occupied by these accesses of the noisy instructions, and
applying the access tracker only may not defeat the attack,
as shown in Fig. 8(d)–8(f). However, when the Record Pro-
tector (RP) is implemented, the access buffer associated with
the attacker’s load is successfully identified and protected, so
the access tracker is able to prefetch the eviction cachelines
and mislead the attacker again. Similarly, without the record
protector, when there are noisy accesses by the attacker’s load
in phase 3 (challenge C4), the value of DiffMin can be
affected, and the access tracker may not be able to prefetch
the eviction cachelines, as shown in Fig. 8(g)–8(i). In con-
trast, when the record protector is applied, the prefetching
is guided by the scale buffer that contains the possible evic-
tion cachelines from the victim, so the access tracker can
again correctly prefetch the eviction cachelines to mislead
the attacker.

Combining all the challenges and all the designs, the se-
curity can be illustrated in Fig. 8(j)–8(l). Without applying
PREFENDER, the attacker can infer the secret with the only
one cache hit (or miss). With PREFENDER, even though all the
challenges are involved, multiple cache hits (or misses) are
introduced, and the attack is defeated.

We further analyze the insights of the defense, which are
shown in Fig. 9, where the x-axis represents the execution
time. We only show the part where the attack is performed.
For Fig. 9(a)–9(c), challenges C1 and C2 are involved, and
PREFENDER-ST+AT is applied. One can notice that the scale
tracker prefetches a small amount of data shown in Fig. 9(a)–
9(c), which corresponds to the data at array indices 64 and 66 of
the green curves in Fig. 8(a)–8(c). After this, the access tracker
prefetches more data shown in Fig. 9(a)–9(c), which is also

shown by the orange curves in Fig. 8(a)–8(c). For Fig. 9(d)–
9(f), all challenges are involved, and PREFENDER with all three
designs is applied. It is indicated that the scale tracker still
prefetches several data. After this, with the guidance of the
record protector, the access tracker successfully prefetches the
data even with the noisy instructions and accesses. The corre-
sponding results are shown in Fig. 8(j)–8(l). This further shows
the mechanism of the defense.

In summary, by successfully defeating the attacks in the
threat model, PREFENDER can enforce the security as the same
as the previous work [8], [9], [23], [24].

C. Performance Evaluation

While enforcing security, PREFENDER can also maintain or
even improve performance. When the record protector is not im-
plemented, the performance results of SPEC CPU 2006 bench-
marks are shown in Table IV. The results show the improvement
percentile compared with the baseline that has no prefetchers.
The main results are Columns 2, 6 and 10, where 32 access
buffers are implemented. When PREFENDER-ST+AT is imple-
mented (Column 2), the performance improvement is about 2%
on average, with the security enforcement. For Columns 6 and
10 where the conventional prefetchers are applied, PREFENDER-
ST+AT can further improve the performance compared with
Columns 4 and 8 where no PREFENDER is implemented, respec-
tively. This shows PREFENDER’s capability for maintaining or
even improving the performance.

When the record protector is implemented, the performance
results of SPEC CPU 2006 benchmarks are shown in Table V,
where the performance distributions are similar as Table IV.
With the record protector, PREFENDER also improves the per-
formance on average, no matter if there are basic prefetchers
or not. At the same time, not only is the security enforced, but

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1468 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

TABLE IV
PERFORMANCE IMPROVEMENT OF SPEC CPU 2006 BENCHMARKS WITHOUT THE RECORD PROTECTOR. (†THE BASIC PREFETCHER.)

Column ID 1 2 3 4 5 6 7 8 9 10 11
Prefetcher PREFENDER-ST+AT Tagged PREFENDER-ST+AT (†Tagged) Stride PREFENDER-ST+AT (†Stride)

# of Acc. Tra. Buf. 16 32 64 - 16 32 64 - 16 32 64

B
en

ch
m

ar
k

400.perlbench 0.677% 0.679% 1.110% 0.241% 0.427% 0.588% 0.324% 0.389% 1.117% 1.065% 1.536%
401.bzip2 3.314% 3.346% 3.407% 4.428% 5.717% 5.728% 5.732% 1.777% 3.922% 3.959% 4.052%
429.mcf 6.421% 8.562% 8.585% 8.636% 12.069% 12.228% 12.237% 13.233% 14.803% 17.684% 17.653%

445.gobmk -0.025% -0.106% -0.122% 1.318% 1.164% 1.103% 1.102% 0.363% 0.433% 0.379% 0.347%
456.hmmer 0.830% 0.862% 0.891% 10.115% 10.128% 10.152% 10.158% 7.119% 6.417% 6.474% 6.512%
458.sjeng -0.354% -0.355% -0.366% -0.437% -0.613% -0.615% -0.609% -0.016% -0.300% -0.303% -0.322%

462.libquantum 6.533% 6.533% 6.532% 4.852% 6.501% 6.501% 6.501% 7.555% 9.768% 9.770% 9.773%
464.h264ref 0.269% 0.256% 0.408% 1.762% 1.707% 1.521% 1.804% 0.934% 0.724% 0.993% 0.793%
471.omnetpp -0.006% -0.006% -0.011% 0.112% 0.109% 0.109% 0.109% 0.229% 0.213% 0.213% 0.211%

473.astar 0.033% 0.398% -0.132% 0.183% 0.212% 0.415% -0.176% 0.032% 0.059% 0.474% -0.021%
483.xalancbmk 0.702% 2.840% 3.941% 11.576% 11.577% 11.952% 10.592% 2.137% 2.771% 4.952% 5.683%
999.specrand 0.000% 0.000% 0.000% 0.001% 0.001% 0.001% 0.001% 0.000% 0.000% 0.000% 0.000%

Avg. 1.533% 1.918% 2.020% 3.566% 4.083% 4.140% 3.981% 2.813% 3.327% 3.805% 3.851%

TABLE V
PERFORMANCE IMPROVEMENT OF SPEC CPU 2006 BENCHMARKS WITH THE RECORD PROTECTOR. (†THE BASIC PREFETCHER.)

Column ID 1 2 3 4 5 6 7 8 9 10 11
Prefetcher PREFENDER Tagged PREFENDER (†Tagged) Stride PREFENDER (†Stride)

# of Acc. Tra. Buf. 16 32 64 - 16 32 64 - 16 32 64

B
en

ch
m

ar
k

400.perlbench 0.584% 0.562% 0.585% 0.241% 0.001% 0.524% 0.545% 0.389% 1.115% 1.118% 1.116%
401.bzip2 3.129% 3.192% 3.251% 4.428% 5.621% 5.646% 5.667% 1.777% 3.828% 3.916% 3.958%
429.mcf 4.347% 5.494% 5.497% 8.636% 9.335% 9.557% 9.540% 13.233% 12.114% 12.755% 12.755%

445.gobmk -0.030% -0.066% -0.084% 1.318% 1.189% 1.171% 1.163% 0.363% 0.386% 0.347% 0.335%
456.hmmer 0.830% 0.861% 0.891% 10.115% 10.128% 10.149% 10.162% 7.119% 6.431% 6.467% 6.529%
458.sjeng -0.411% -0.428% -0.422% -0.437% -0.649% -0.660% -0.687% -0.016% -0.324% -0.337% -0.373%

462.libquantum 6.516% 6.518% 6.521% 4.852% 6.502% 6.502% 6.502% 7.555% 9.781% 9.782% 9.782%
464.h264ref 0.346% 0.300% 0.346% 1.762% 1.739% 1.806% 1.800% 0.934% 0.899% 0.812% 0.843%
471.omnetpp 0.025% 0.047% 0.058% 0.112% 0.104% 0.112% 0.106% 0.229% 0.231% 0.225% 0.230%

473.astar 0.029% 0.308% -0.139% 0.183% 0.208% 0.355% -0.182% 0.032% 0.054% 0.385% -0.027%
483.xalancbmk 0.860% 2.372% 3.822% 11.576% 11.533% 11.704% 10.624% 2.137% 3.123% 4.644% 5.628%
999.specrand 0.000% 0.000% 0.000% 0.001% 0.001% 0.001% 0.001% 0.000% 0.000% 0.000% 0.000%

Avg. 1.352% 1.597% 1.694% 3.566% 3.809% 3.905% 3.770% 2.813% 3.136% 3.343% 3.398%

also the robustness of PREFENDER is greatly improved by the
record protector.

While the performance is improved by PREFENDER on av-
erage, the impacts on different benchmarks vary. For exam-
ple, 401.bzip2, 429.mcf and 462.libquantum have the most
speedup with PREFENDER. In contrast, there is almost no per-
formance impact on 999.specrand. For 445.gobmk, 458.sjeng
and 471.omnetpp, their performance has a slight drop with
PREFENDER. The effect of the number of the access buffers
is also evaluated and shown in Tables IV and V. The results
indicate that more access buffers usually help the performance.
Besides, if the buffers are more than 32, marginal improvements
are obtained.

Besides, the results of the cases newly presented in SPEC
CPU 2017 benchmarks are shown in Table VI. Similar to SPEC
CPU 2006, PREFENDER also has performance improvement,
both with and without the record protector. At the same time,
PREFENDER can further increase the performance based on
the basic prefetchers. Note that for some benchmarks such as
510.parest_r, the performance improvement is relatively large.
This is because the data prefetched by PREFENDER can greatly
help reduce the cache miss rate. For example, the cache miss
rate and the cache misses’ access latency of 510.parest_r in
Column 2 of Table VI (in the revision letter) are 50.26% and
55.99% less than that without PREFENDER, respectively.

D. Analysis of Cache Miss and Defense

Prefetching can impact the cache miss rate and latency. We
evaluated the total latency of all cache misses of each bench-
mark, which is shown in Fig. 10. Each result is normalized to
the baseline. In Fig. 10, “PREFENDER-ST+AT” have the same
configuration as Columns 2, 6, 10 in Table IV, where the
record protector is not applied. “PREFENDER” has the same
configuration as Columns 2, 6, 10 in Table V with the scale
tracker, the access tracker, and the record protector. It is indi-
cated that the total latencies of cache misses are reduced on
average when PREFENDER is implemented. For a few cases,
the latency becomes higher than the baseline, which leads to
a slight performance drop, such as 458.sjeng. Some cases have
similar miss latencies before and after applying PREFENDER, but
the performance is still improved, such as 400.perlbench and
429.mcf.

We further evaluated the number of the prefetches performed
by the scale tracker, the access tracker, and the record protector
of PREFENDER. The results are shown in Fig. 11. Note that
the access tracker prefetches the most data, and the record
protector guides the access tracker to prefetch more data than
the scale tracker. The reason is that the scale tracker performs
one prefetch when a target address of a load is calculated
by addition and multiplication, and the scale is larger than the

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1469

TABLE VI
PERFORMANCE IMPROVEMENT OF SPEC CPU 2017 BENCHMARKS. (†THE BASIC PREFETCHER.)

Column ID 1 (ST+AT) 2 3 4 (ST+AT) 5 6 7 (ST+AT) 8
Prefetcher PREFENDER Tagged PREFENDER (†Tagged) Stride PREFENDER (†Stride)

# of Acc. Tra. Buf. 32 32 - 32 32 - 32 32

B
en

ch
m

ar
k

507.cactuBSSN_r 0.917% 0.874% 12.256% 12.752% 12.711% 10.707% 11.672% 11.557%
526.blender_r 0.015% 0.015% 0.356% 0.302% 0.302% 0.120% 0.133% 0.133%

531.deepsjeng_r -0.396% -0.379% -0.121% -0.525% -0.513% 0.000% -0.380% -0.369%
538.imagick_r 5.664% 5.664% 4.240% 6.389% 6.389% 0.561% 6.292% 6.292%

541.leela_r -0.072% -0.249% 0.164% 0.257% 0.120% 0.145% 0.187% 0.073%
557.xz_r 0.243% 0.332% 4.015% 4.107% 4.104% 1.637% 1.873% 1.892%

510.parest_r 39.738% 50.291% 44.043% 49.822% 54.617% 0.700% 35.586% 46.775%
548.exchange2_r 0.000% -0.006% 0.000% 0.000% 0.000% 0.011% -0.004% 0.015%

554.roms_r 0.000% 0.000% 30.898% 30.898% 30.898% 15.797% 15.797% 15.797%
Avg. 5.123% 6.282% 10.650% 11.556% 12.070% 3.298% 7.906% 9.129%

Fig. 10. The normalized total latency of all cache misses of L1Dcache.

Fig. 11. The number of the prefetches. (The prefetches of the record protector refer to those of the access tracker guided by the record protector.)

Fig. 12. The number of the protected buffers during the execution. (The
configurations are the same as that of Column 2 in Table V.)

cacheline size. This happens less frequently than triggering the
record protector, which helps the access tracker prefetch each
time a scale from the scale tracker is recorded and a load’s
target address hits the scale history. For the access tracker, the
requirement for prefetching is the easiest to be satisfied since
it only needs a load to be frequently executed.

Finally, the number of the protected access buffers dur-
ing the execution is tested in Fig. 12, which indicates that

different benchmarks have different patterns on the protected
buffer numbers. For 400.perlbench, 458.sjeng, and 464.h264ref,
most of the buffers are protected during the execution. In con-
trast, 456.hmmer, 462.libquantum, 473.astar, and 999.specrand
have no protected buffer. For other benchmarks, the number of
the protected buffers varies. These results indicate that different
functionality of the program can affect the behaviors of the
record protector.

E. Hardware Resource Consumption Analysis

We briefly analyze the upper bound of the hardware resource
consumption. For the SRAM size of the scale tracker, the
prefetching is performed within one page, so 16 bits are enough
for the values in the calculation buffers even with a page size
of 64KB. For each register, there are two values associated, so
the scale tracker needs hundreds of bytes in total for dozens
of registers. For the datapath of the scale tracker, an adder, a
multiplier and a comparator are used, which are also 16-bit.

For the SRAM size of the access tracker, there are 32 ac-
cess buffers, each of which has 8 entries. Even if each value
of the buffer is 64-bit, only <3KB SRAMs are required. For

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



1470 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

the datapath of the access tracker, since the access tracker
predicts and prefetches the eviction cachelines, 20 bits are
enough for calculating the DiffMin even when L1Dcache is
as large as 1MB. Several 20-bit comparators and 20-bit adders
are used for each access buffer. The hardware consumption is
also reasonable.

For the SRAM size of the record protector, the scale
buffer has 8 entries in the experiments, with each entry
16(sc)+64(BlkAddr)= 80 bits. For each access buffer, the
record protector requires another 80-bit register for the scale
history. Therefore, 400 bytes are needed. For the datapath of
the record protector, a 2-way associative L1Dcache is 64KB,
with each cacheline of 64 bytes, so 9 bits are used for the set
index of the cache. Since the target of the prefetching is the
cachelines, we only use the set index (the address of the cache
entries) to calculate the modules, and several hardware modules
of 9-bit modulus are needed. According to the synthesis results
from Synopsys Design Compiler with ASAP 7nm library [41],
the modulus only needs 2 cycles for calculation with 9-bit
bandwidth, which is much quicker than memory access. Since
the record protector only works upon the memory access of a
load, the modulus calculation latency can be ignored through
parallel calculation.

In summary, the hardware consumption is reasonable when
PREFENDER is implemented in a modern 64-bit processor.

VI. CONCLUSION

In this work, a secure prefetcher named PREFENDER is pro-
posed, which can defeat cache side channel attacks while main-
taining or even improving performance. In PREFENDER, Scale
Tracker (ST), Access Tracker (AT), and Record Protector (RP)
are designed to predict the eviction cachelines according to
the victim’s memory access during phase 2, predict the at-
tacker’s access patterns during phase 3, and increase the ro-
bustness, respectively. The security is increased by prefetching
the eviction cachelines that can confuse the attacker. Experi-
ments on Flush+Reload, Evict+Reload, and Prime+Probe prove
the effectiveness and robustness of our defense. Besides, the
average performance is also increased by the accurate predic-
tion, according to the evaluations on SPEC CPU 2006 and
2017 benchmarks.

REFERENCES

[1] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel,” IACR Cryptology ePrint Archive, Paper 2002/169, pp. 1–
23, 2002.

[2] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in Proc. USENIX Secur. Symp., 2014,
pp. 719–732.

[3] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Proc. IEEE Symp. Secur. Privacy, 2019, pp. 1–19.

[4] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in Proc. USENIX Secur. Symp., 2018, pp. 973–990.

[5] C. Canella et al., “A systematic evaluation of transient execution attacks
and defenses,” in Proc. USENIX Secur. Symp., 2019, pp. 249–266.

[6] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AEs,” in Proc. Cryptographers’ Track RSA Conf.,
2006, pp. 1–20.

[7] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution

processors,” in Proc. 51st IEEE/ACM Int. Symp. Microarchit., 2018,
pp. 974–987.

[8] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional specula-
tion: An effective approach to safeguard out-of-order execution against
spectre attacks,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit., 2019, pp. 264–276.

[9] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible in the
cache hierarchy,” in Proc. IEEE/ACM Int. Symp. Microarchit., 2018,
pp. 428–441.

[10] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovacki, and G. Venkatara-
mani, “Defeating cache timing channels with hardware prefetchers,”
IEEE Des. Test, vol. 38, no. 3, pp. 7–14, Jun. 2021.

[11] H. Fang, M. Doroslovacki, and G. Venkataramani, “Reuse-trap: Re-
purposing cache reuse distance to defend against side channel leakage,”
ACM/IEEE Des. Automat. Conf., 2020, pp. 1–6.

[12] A. Fuchs and R. B. Lee, “Disruptive prefetching: Impact on side-
channel attacks and cache designs,” ACM Int. Syst. Storage Conf., 2015,
pp. 1–12.

[13] B. Panda, “Fooling the sense of cross-core last-level cache eviction based
attacker by prefetching common sense,” in Proc. Int. Conf. Parallel
Archit. Compilation Techn., 2019, pp. 138–150.

[14] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proc. USENIX
Secur. Symp., 2015, pp. 897–912.

[15] A. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, vol. 11, no. 12, pp. 7–21, 1978.

[16] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” in Proc. ACM/IEEE Conf. Supercomput.,
1991, pp. 176–186.

[17] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit., 2007, pp. 63–74.

[18] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,” in
Proc. ACM/IEEE Int. Symp. Comput. Archit., 1997, pp. 252–263.

[19] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-block
correlating prefetchers,” in Proc. ACM/IEEE Int. Symp. Comput. Archit.,
2001, pp. 144–154.

[20] Z. He and R. B. Lee, “How secure is your cache against side-
channel attacks?” in Proc. IEEE/ACM Int. Symp. Microarchit., 2017,
pp. 341–353.

[21] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkatara-
mani, “PrODACT: Prefetch-obfuscator to defend against cache timing
channels,” in Proc. Int. J. Parallel Program., vol. 47, no. 4, pp. 571–
594, 2019.

[22] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing speculative execution attacks at their source,” in Proc.
IEEE/ACM Int. Symp. Microarchit., 2019, pp. 572–586.

[23] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding speculative data from microarchitectural covert chan-
nels,” in Proc. Int. Conf. Parallel Architec. Compilation Techn., 2019,
pp. 151–164.

[24] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the spectre of a
meltdown with leakage-free speculation,” in Proc. ACM/IEEE Des.
Automat. Conf., 2019, pp. 1–6.

[25] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in Proc. ACM/IEEE
Int. Symp. Comput. Archit., 2020, pp. 132–144.

[26] T. Solanki and B. Panda, “SpecPref: High performing speculative attacks
resilient hardware prefetchers,” in Proc. IEEE Int. Symp. Hardware
Oriented Secur. Trust (HOST), 2022, pp. 57–60.

[27] F. Liu et al., “Catalyst: Defeating last-level cache side channel attacks
in cloud computing,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), 2016, pp. 406–418.

[28] T. Kim, M. Peinado, and G. Mainar-Ruiz, “{STEALTHMEM}:
{System-Level} protection against {cache-based} side channel attacks
in the cloud,” in Proc. USENIX Secur. Symp., 2012, pp. 189–204.

[29] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proc. IEEE/ACM Int. Symp.
Microarchit., 2018, pp. 775–787.

[30] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proc. ACM/IEEE Int. Symp.
Comput. Archit., 2007, pp. 494–505.

[31] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-based

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: PREFENDER: A PREFETCHING DEFENDER AGAINST CACHE SIDE CHANNEL ATTACKS AS A PRETENDER 1471

side channel attacks,” in Proc. ACM/IEEE Int. Symp. Comput. Archit.,
2017, pp. 347–360.

[32] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. Int. Cryptol. Conf., 1996,
pp. 104–113.

[33] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, NIST AES
Proposal, 1998, pp. 1–45.

[34] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! Speculation attacks using the return stack buffer,” in
Proc. USENIX Workshop Offensive Technol., 2018, pp. 1–12.

[35] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU register state using
microarchitectural side-channels,” 2018, arXiv:1806.07480.

[36] J. V. Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX
Kingdom with transient out-of-order execution,” in Proc. USENIX Secur.
Symp., 2018, pp. 991–1008.

[37] The gem5 simulator.” gem5. Accessed: 2022. [Online]. Available: http://
www.gem5.org/Main_Page

[38] SPEC CPU 2006 Benchmark.” Standard Performance Evaluation Cor-
poration (SPEC), Gainesville, VA, USA. Accessed: 2006. [Online].
Available: https://www.spec.org/cpu2006/

[39] SPEC CPU 2017 Benchmark.” Standard Performance Evaluation Cor-
poration (SPEC), Gainesville, VA, USA. Accessed: 2017. [Online].
Available: https://www.spec.org/cpu2017/

[40] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” in Proc. ACM/IEEE Conf. Supercomput.,
1991, pp. 176–186.

[41] ASAP 7nm predictive PDK.” Arizona State Univ., Tempe, AZ, USA.
Accessed: 2017. [Online]. Available: http://asap.asu.edu/asap/

Luyi Li received the B.S. degree in VLSI de-
sign and system integration from Nanjing Univer-
sity, China. He is currently working toward the
Ph.D. degree with the Department of Computer
Science and Engineering, University of California,
San Diego. His research interests include computer
architecture, hardware security, and domain-specific
acceleration.

Jiayi Huang (Member, IEEE) received the B.Eng.
degree in information and communication engineer-
ing from Zhejiang University, China, in 2014, and
the Ph.D. degree in computer engineering from
Texas A&M University, in 2020. He is currently
an Assistant Professor with The Hong Kong Uni-
versity of Science and Technology, Guangzhou.
His research interests include computer architecture,
computer systems, and security. He is a member of
the ACM and the IEEE Computer Society.

Lang Feng (Member, IEEE) received the B.E.
degree in electronic science and technology (micro-
electronic technology) from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2016, and the Ph.D. degree in computer
engineering from Texas A&M University, College
Station, in 2020. In November 2020, he joined
the School of Electronic Science and Engineering
of Nanjing University, where he is an Associate
Research Fellow. He is working as an Assistant Pro-
fessor at Sun Yat-sen University since June 2023.

His research interests include computer architecture and security.

Zhongfeng Wang (Fellow, IEEE) received the B.E.
and M.S. degrees from Tsinghua University, and
the Ph.D. degree from the University of Min-
nesota, Minneapolis, MN, USA, in 2000. He has
been working with Nanjing University, China, as
a Distinguished Professor since 2016. Previously
he worked with the Broadcom Corporation, CA,
from 2007 to 2016 as a Leading VLSI Architect.
Before that, he worked with Oregon State University
and National Semiconductor Corporation. He is a
world-recognized expert on low-power high-speed

VLSI design for signal processing systems. He has published over 200
technical papers with multiple best paper awards received from the IEEE
Technical Societies. In the current record, he had many papers ranking among
top 25 most (annually) downloaded manuscripts in IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. In the past, he
has served as an Associate Editor for IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS I: REGULAR PAPERS, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS II: EXPRESS BRIEFS, and IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION (VLSI) SYSTEMS for many terms.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on June 25,2024 at 21:19:25 UTC from IEEE Xplore.  Restrictions apply. 

http://www.gem5.org/Main_Page
http://www.gem5.org/Main_Page
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
http://asap.asu.edu/asap/


<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


