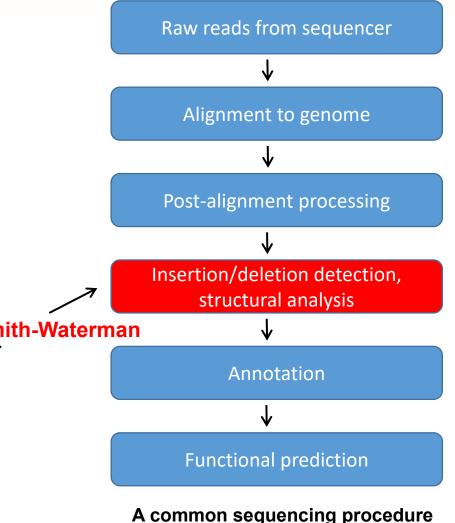


PipeBSW: A Two-Stage Pipeline Structure for Banded Smith-Waterman Algorithm on FPGA

Luyi Li, Jun Lin, and Zhongfeng Wang Integrated Circuits and Intelligent Systems (ICAIS) Lab Nanjing University, China

ISVLSI 2021

- Background
- •Hardware Architecture
- Experimental Validation
- Conclusion

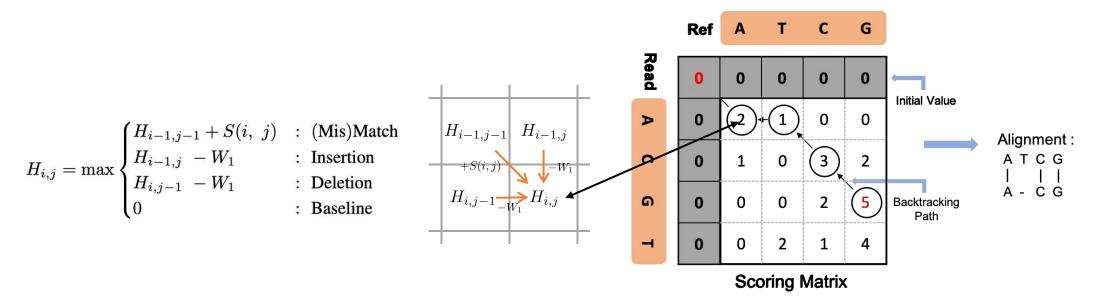

- •Hardware Architecture
- Experimental Validation
- Conclusion

Background

• DNA Sequencing

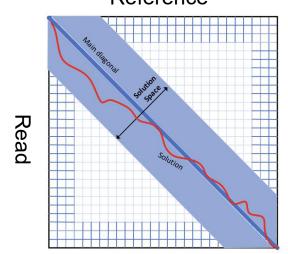
NANJING UNIVERSITY

- It has a wide range of application scenarios, such as early cancer detection, gene editing and virus vaccine research.
- DNA sequencing is the process of determining the nucleic acid sequence.
- Sequence alignment is to align the sequences to Smith-Waterman a known reference genome that may reveal relationships between the sequences. Reference: - CG QT TTCGAAQGGTTTGCAATAGQ - GACATGG ΑT Read: ATTTTACGd-CGCGAAdTCTTTGC--TAGdTCTCATGG Match Deletion Mismatch Insertion

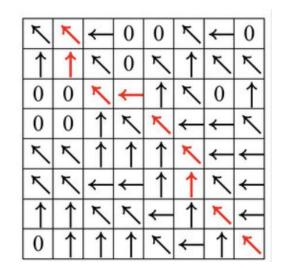


Background

Smith-Waterman (S-W) Algorithm[1]


- Scoring Step
 - Record a scoring matrix
 - Most time-consuming, but suitable for parallel acceleration
- Bracktracking Step
 - Generate an alignment path
 - Commonly on CPU, need to read the scoring matrix from memory (memory bottleneck)

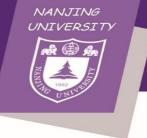
Banded S-W[2] Reference


NANJING UNIVERSITY

- Aligning sequences with a limited number of mismatches, deletion and insertion.
- If only a 10% mismatch is acceptable, the solution can be only 10% upper or lower than the main diagonal.

Relatively low resource consumption to record the matrix, so we can store it in registers (can mitigate the memory bottleneck problem)

• Direction Matrix[3]

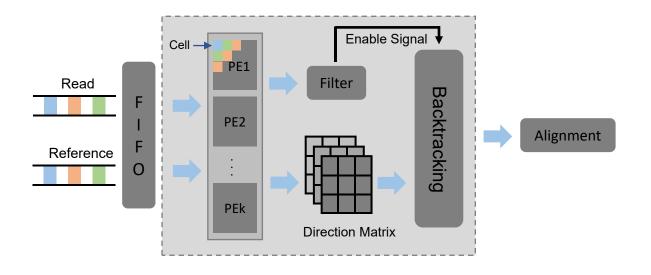

- ♦ Match (the score inherits from <), mismatch (from <), insertion (from ↑), and deletion (from ←), can be represented within 2 bits.
- The direction matrix still keeps 2 bits per element as the score is increasing.

[2] Z. Nawaz, M. Nadeem, H. van Someren, and K. Bertels, "A parallel fpga design of the smith-waterman traceback," in 2010 International Conference on Field-Programmable Technology, pp. 454–459, IEEE, 2010.
[3] K.-M. Chao, W. R. Pearson, and W. Miller, "Aligning two sequences within a specified diagonal band," Bioinformatics, vol. 8, no. 5, pp. 481–487, 1992.

THE CONTRACTOR

- Motivation
 - Improve calculation parallelism and performance
 - Optimize the lookahead calculation cell
 - Design a hardware backtracking module to avoid communication with the memory
 - Mitigate resource consumption and memory bottleneck
 - Combine the banded S-W and the direction matrix
 - Design a two-stage pipeline structure to increase the reuse rate of modules

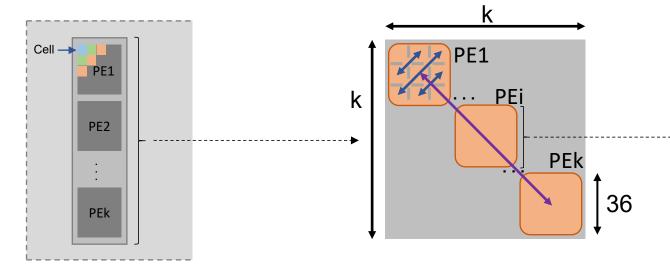
The whole process of the algorithm is implemented on FPGA.

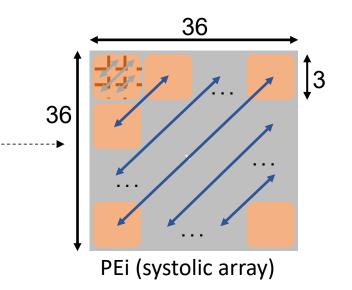


- Background
- Hardware Architecture
- Experimental Validation
- Conclusion

Hardware Architecture

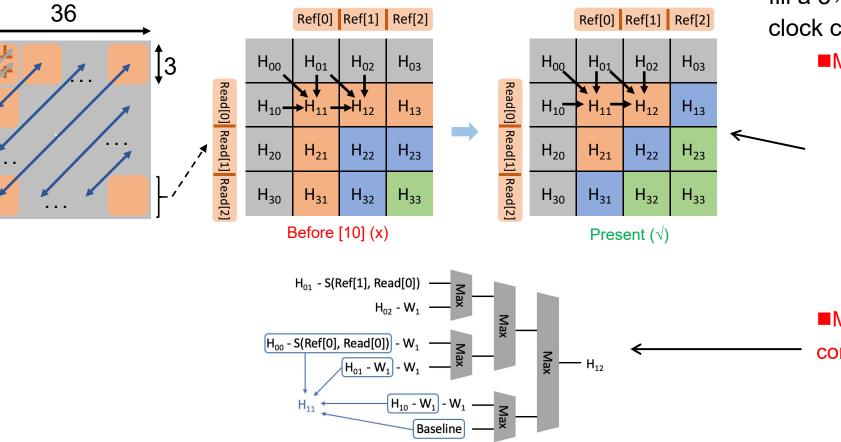
Overall Workflow




- Read and reference are input through FIFO, sliced into segments, and then sent to relative PEs to do the scoring step.
- One PE consists of several calculation cells, and outputs a direction matrix for the backtracking step.
- The filter module estimates the number of errors along with scoring, in order to identify bad candidate reads early in the procedure.

• Scoring Calculation Structure

NANJING


- A structure for global alignment in the banded S-W.
- Used among PEs to construct the main diagonal band.
- A systolic array structure consists of small calculation cells.
- Positions in the diagonal direction can do parallel calculation.

NANJING UNIVERSITY

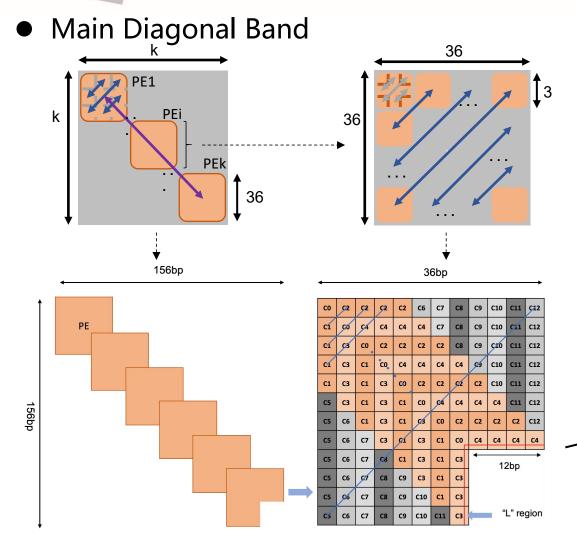
36

Hardware Architecture

Calculation Cell

•Lookahead calculation technique, fill a 3×3 scoring matrix within three clock cycles.

More balanced critical path.


Six candidate results of H_{1,2} are directly compared, without knowing H_{1,1}.
 Within the same 3 cycles, only 3 positions (H_{1,2}, H_{2,1}, H_{3,3}) need lookahead technique after modification.
 More parallel and reusable

. comparison.

Parallel comparison.Parts of the intermediate results can be shared.

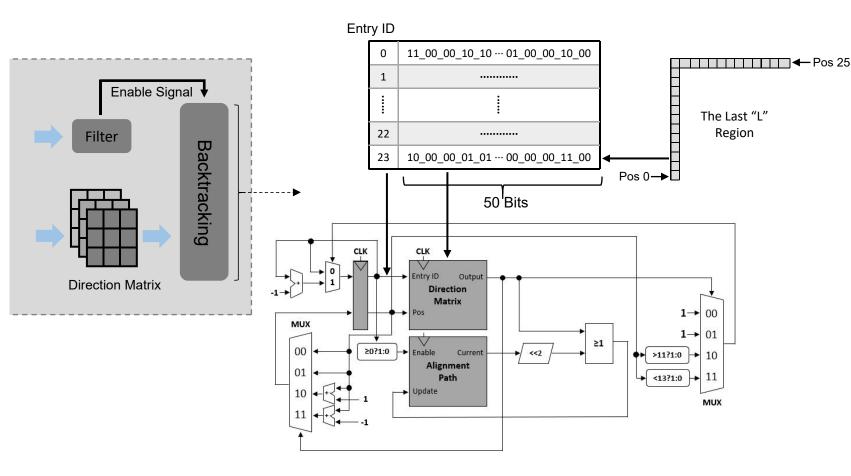
NANJING UNIVERSITY

Hardware Architecture

Why only cells along the "L" region? The filter module ensures that the backtracking path is bounded in the band.

• Systolic array structure

- Thirteen 3×3 cells are sufficient to constitute a 36×36 processing element (PE).
- A 12 × 12 overlap between each two PEs.

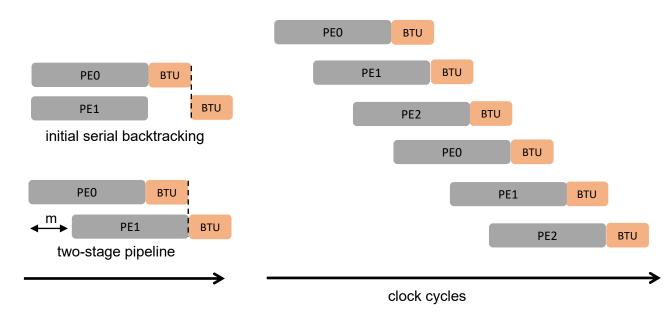

Diagonal Band

- 25 positions at the end of the PE compose a "L" region.
- The "L" region is expanded from the end to the beginning of the PE.
- All the cells along "L" regions need
- to record the direction information to generate a direction matrix.

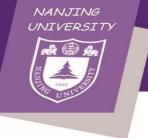
Hardware Architecture

• Backtracking Module

NANJING UNIVERSITY



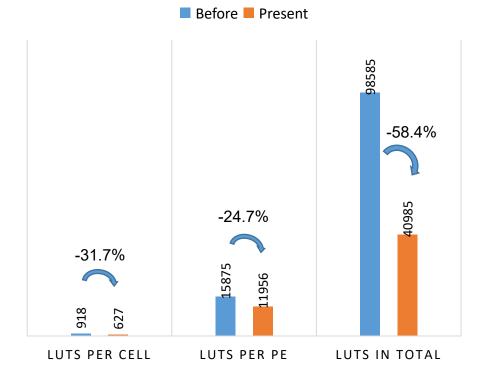
- A register buffer is designed to store the direction matrix and a hardware module is designed to do the backtracking step.
- The module can directly read information from the buffer, instead of sending the matrix to a general-purpose processor.
- The entry id pointer and the position pointer are updated in each cycle based on the information that is read.
- Avoiding communication with the memory, the entire process only spends 24-36 cycles.



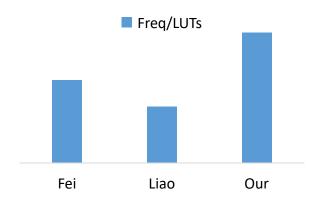
Hardware Architecture

• Two-Stage Pipeline Structure

- ♦ Parallel scoring vs. Serial scoring
 - Parallel: fast but resource-consuming
 - Serial: accurate, resource-saving, but slow
- Parallel backtracking vs. Serial backtracking
 - Parallel: inaccurate (x)
 - Serial: accurate (√)
- v1: "Parallel scoring + Serial backtracking"
 - Some PEs are in the idle state when waiting for BTU.
 - They can be reused for next-round calculation.
- v2: "Two-stage pipeline"
 - To be more re-configurable, the start time of PE1 can be delay by m cycles after PE0.
 - The reuse rate of PE modules can be significantly improved and the resources saved are approaching 50%.

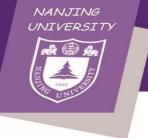


- Background
- Hardware Architecture
- Experimental Validation
- Conclusion


Experimental Validation

• Resource consumption (6 PEs)

• Comparison


Work	Backtrack	Freq(MHz)	LUTs	Arch
Nawaz[5]	Yes	79.3	-	FPGA
Fei[6]	Yes	150.0	57870	FPGA
Liao[7]	Yes	125.0	70839	FPGA
Our	Yes	166.7	40985	FPGA

[5] Z. Nawaz, M. Nadeem, H. van Someren, and K. Bertels, "A parallel fpga design of the smith-waterman traceback," in 2010 International Conference on Field-Programmable Technology, pp. 454–459, IEEE, 2010.

[6] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, "Fpgasw: Accelerating large-scale smith–waterman sequence alignment application with backtracking on fpga linear systolic array," Interdisciplinary Sciences: Computational Life Sciences, vol. 10, no. 1, pp. 176–188, 2018.

[7] Y.-L. Liao, Y.-C. Li, N.-C. Chen, and Y.-C. Lu, "Adaptively banded smith-waterman algorithm for long reads and its hardware accelerator," in 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 1–9, IEEE, 2018.

- Background
- Hardware Architecture
- Experimental Validation
- Conclusion

- PipeBSW is proposed, a re-configurable system implementing the whole Smith-Waterman algorithm on FPGA.
- The lookahead calculation technique improves parallelism of cells, reducing the time it takes to complete the scoring.
- The hardware backtracking module directly generates the alignment path from the direction matrix buffer, mitigating potential memory bandwidth issue.
- The pipeline structure adjusts the calculation timing between modules, reducing the resource consumption by 58.4%.
- Compared with previous works, PipeBSW achieves both high frequency (166.7MHz) and low resource consumption (40985LUTs).

Thanks for Listening

If You Have Any Question, Please Contact Us at luyli@smail.nju.edu.com

ICAIS Lab, Nanjing University, China