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Abstract—With the development of bioinformatics, there
is unprecedented progress and wide applications of DNA
sequencing technology, especially in helping biological and
medical researchers obtain and analyze complete DNA se-
quences. Smith-Waterman (S-W) algorithm is one of the critical
algorithms used in this technology. However, the tremendous
amount of DNA sequence data makes it very inefficient to
implement the algorithm only with software, so many recent
works have tried to accelerate it on hardware. Unfortunately,
many of them implemented on the CPU+FPGA heterogeneous
platform are likely to require high memory bandwidth and
large hardware resource. To mitigate these drawbacks, in
this paper we propose PipeBSW, an hardware acceleration
implementation on FPGA based on the concept of banded S-
W. Using the lookahead calculation technique in cells and a
two-stage pipeline structure for processing elements and the
backtracking module, the experimental results show that the
proposed system can achieve a 720.9Mbps throughput with a
58.4% LUT consumption reduction, compared with the prior
work without the pipeline structure.

Keywords-FPGA, Smith-Waterman Algorithm, Hardware
Acceleration, DNA Alignment

I. INTRODUCTION

Since the Human Genome Project was put forward, people

have never stopped exploring DNA sequences in recent

decades. DNA sequencing technology, which was invented

to obtain and analyze the complete sequences, has also been

developing rapidly.

In the process of DNA sequencing, sequence alignment

is a very critical technique. How to quickly align sequences

has become a focus of research by bioinformatics workers.

Software tools such as Minimap2 [1], BWA-MEM [2],

and Bowtie2 [3] are designed to simplify the operational

complexity of the complete process. Many classic algo-

rithms, such as Burrows-Wheeler Transform (BWT) [4],

and Smith-Waterman local alignment (S-W) [5], [6], are

widely applied in these tools. Take a state-of-the-art whole-

genome sequencing (WGS) process as an example. Short

reads sampled randomly from human DNA, with the length

of 100-200bp (short for base pair), are mapped to a human

gene reference (3,000Mbp). During this period, each short

read firstly uses BWT to locate some candidate segments

in the reference quickly and roughly, where the read and

reference are likely to be matched. Then the alignment

between the read and the reference segment could be further

optimized by S-W, and in this period, high match accuracy

is always pursued.

In recent years, with the introduction of the high-

throughput sequencing (HTS) technologies [7], there is a

tremendous increment in the amount of gene data. Unfortu-

nately, only using software to accelerate these algorithms

has been insufficient to meet the surge. Therefore, this

situation has attracted wide attention from the field of high-

performance computation. Researchers have been focusing

on accelerating the process with the aid of high-performance

infrastructures such as CPU clusters, GPUs, and FPGAs [8].

Because of its highly customizable and reconfigurable

features, FPGA has always been an excellent platform to ac-

celerate specific algorithms, both in academia and industry.

As we know, S-W can be divided into two steps: scoring

and backtracking. Most of the relative works use FPGA

to decrease the time consumption caused by the scoring,

which almost takes up to 90% of the total time. A scoring

matrix and the position of the maximum score are recorded

in the memory and then transferred back to the CPU to do

the backtracking. However, as data expands massively, it is

predictable that there will be a memory bottleneck [9], which

is likely to cause unpredictable stalls.

In this paper, we propose a new complete S-W implemen-

tation to mitigate the problems above, called PipeBSW. We

optimize the scoring step using the lookahead calculation

technique [10]. For the transmission bandwidth issue, we

choose to implement the algorithm entirely on FPGA, so

a hardware backtracking module (BTU) is also designed

for the backtracking step. Furthermore, we observe that in

a WGS process, S-W usually only needs to calculate the

scores along a diagonal band in the matrix called banded

S-W [11], [12]. Therefore we design a specific processing

element (PE) structure to construct this band. At last, a

novel two-stage pipeline structure between PE and BTU can

improve the module’s reuse rate. The structure minimizes

resource consumption, and meanwhile it maintains parallel

computing. In summary, the main benefits of the proposed

technique are as follows:
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• The lookahead calculation technique improves paral-

lelism of cells, reducing the number of cycles it takes

to complete the calculation.

• The pipeline structure only needs to adjust the calcula-

tion timing between PE and BTU, without the need to

make significant changes to original hardware modules.

• The complete solution can be implemented on a pure

FPGA platform without needing a CPU, which miti-

gates the potential transmission bandwidth issue.

II. BACKGROUND

A. Smith-Waterman Algorithm

The Smith-Waterman algorithm [5] realizes alignment

between two sequences. It consists of two phases: (1) filling

a scoring matrix and (2) backtracking the matrix to find an

optimal alignment between the read and reference sequence.

There are three types of errors: mismatch, insertion, and

deletion, and the latter two are collectively referred to as

gap errors. The following recurrence formula can describe

the scoring step, where Hi,j represents the score of the i-th
row and the j-th column in the matrix:

Hi,j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hi−1,j−1 + S(i, j) : (Mis)Match

Hi−1,j −W1 : Insertion

Hi,j−1 −W1 : Deletion

0 : Baseline

(1)

The complete algorithm can be demonstrated by Fig. 1.

Firstly, the first row and column are initialized with a

certain value. In this case it is set as 0. Secondly, the

scoring matrix is filled following the formula mentioned

above. In this case, we set W1 as 1, and S(i, j) is

2 if Ref [i] = Read[j] or otherwise is −2. Taking

H1,1 as an example, S(1, 1) is 2 because Ref [1] =
Read[1] = “A”. As a result, H1,1 is the maximum of

{H0,0 + 2 = 2, H1,0 − 1 = −1, H0,1 − 1 = −1, 0}, which

is namely 2. It means that this score comes from its upper

left position. Finally, the maximum score of the matrix is

located, which is 5 in this case. And then the backtracking

starts from the position of the maximum. If this score comes

from the upper left, it is a match or mismatch. In the

Figure, the maximum comes from the upper left score 3,

and S(4, 4) = 2, so this is a match, and it is recorded in the

alignment information: “G”-“G”. If the score inherits from

the left or top, the corresponding gap error is also recorded.

Take the score 1 on the backtracking path as an example.

This score comes from the left score 2, so it is a deletion

and a “-” character is inserted into the read sequence: “T”-

“-”. Otherwise, it is an insertion, and the “-” is added to

the reference. This process is repeated until the path comes

across the baseline 0, and finally the optimal alignment result

is output.

Figure 1: An example of the S-W algorithm. By backtrack-

ing the scoring matrix, the read sequence is aligned with “A

- CG” to the reference sequence “ATCG”.

B. Banded S-W

We assume that our work is employed in WGS. As

mentioned in Section I, in the WGS workflow, S-W is

usually used to select the best match among the candidate

reads. In such a situation, the number of errors (mismatch,

insertion, and deletion) in reads is limited because BWT has

already filtered most of the bad candidates. As observed,

the optimal alignment path is usually not far away from

the main diagonal of the matrix. For instance, if the system

only accepts a number of errors within 10% of the sequence

length, the path can be only 10% upper or lower than

the main diagonal [13]. Instead of computing the complete

scoring matrix, only positions within the diagonal band need

to be calculated, which is called banded S-W [11], [12]. A

hardware structure is designed to implement this banded S-

W, which will be detailed in Section III.

C. Direction Matrix

To compress data and save resources, the direction matrix

is always used to replace the scoring matrix [9]. In this

application, we assume that our structure is utilized to do

the global alignment, so the situation that the stop in the

backtracking caused by meeting the baseline is categorized

into a mismatch error. Therefore, all the four situations:

match (the score inherits from the upper left ↖), mismatch

(from the upper left ↖), insertion (from the top ↑), and

deletion (from the left ←), can be represented within 2

bits. We call it direction record rule in this paper. As

the length of the sequence expands, the direction matrix’s

advantage over the scoring matrix is strengthened. Compared

with larger and larger bit-widths to represent continuously

increasing scores, the direction matrix still keeps 2 bits per

element, which saves resources to a large extent.

III. HARDWARE ARCHITECTURE

A. Overall Workflow

There have been several methods of parallel computing

for S-W concluded in [14], two of which utilized in our

work are demonstrated in Fig. 2. Fig. 2(a) illustrates a
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systolic array structure which consists of several small

calculation cells. Positions in the main diagonal direction

can do parallel calculation. It is adopted in a 3×3 calculation

cell structure(detailed in Section III-B). Fig. 2(b) illustrates

a parallel structure for global alignment in the banded S-W.

This structure is used among different PEs to construct the

main diagonal band.

Figure 2: In a M×N sequence alignment, square cells sized

by K×K compose a systolic array structure. Arrows in gray

and blue show that the scoring in the diagonal direction can

run parallel.

Our complete workflow is depicted in Fig. 3. Read and

reference are input through FIFO, sliced into segments, and

then sent to relative PEs. The scoring step is executed by

parallel PEs, which consists of small calculation cells. Once

the scoring finishes, the direction matrix of each PE is

generated.

Figure 3: The complete banded S-W algorithm workflow on

FPGA. Major modules are plotted in deep gray. Blue arrows

show the direction of data flow.

The system decides whether to do the backtracking based

on the filter module. Some reads turn out to be bad

candidates after the backtracking, and in order to identify

them early in the workflow, we employ an error counting
mechanism running together with the scoring. By this

mechanism, the number of different types of errors can

be obtained once after the scoring. If the sum of errors

exceeds the threshold, the filter will disable the backtracking

module, and the backtracking step will be skipped, which

saves computational time.

B. Calculation Cell

Utilizing the method in Fig. 2(a), one parallel calculation

round is finished within one clock cycle. Therefore in a 3×3

matrix, because the calculation of H1,2 relies on H1,1, they

must be in a different clock cycles. Usually, it takes five

cycles in total to finish filling the 3× 3 matrix.

Inspired by the carry lookahead adder, a lookahead
calculation technique can be adopted to fill a 3×3 scoring

matrix within three clock cycles [10] as shown in Fig. 4.

Taking H1,1 and H1,2 as an example again, we can obtain

their results at the same cycle because all six possible paths

leading to H1,2 are directly compared with each other,

without knowing H1,1 as shown in Fig. 5. At first, H3,3

is categorized into the calculation in the first cycle together

with H1,2. However, it is observable that the performance

of this technique is quite sensitive to the critical path of the

comparison unit, especially that the lookahead calculation

of H3,3 contains too many times comparison operations.

Therefore, we further optimize the calculation cell in the

following two aspects:

• More balanced critical path length per cycle. As

illustrated in Fig. 4, 3 positions are calculated in each

clock cycle after changing the cycle of the calculation

of H1,3, H3,1, H2,3, H3,2. Within the same 3 cycles,

only 3 positions (H1,2, H2,1, H3,3) need lookahead

technique after modification, a half less than before

(H1,2, H2,1, H1,3, H3,1, H2,3, H3,2). In the initial ver-

sion, H1,3 and H3,1 have to compare all the eight

possible results. While now they only have 4 candidate

results to be compared because H1,2 and H2,1 have

been calculated in the last clock cycle.

• More parallel and reusable comparison unit. Take

H1,2 as an example in Fig. 5. Instead of comparing all

possible results one by one, they are divided into pairs.

The previous 6-level serial comparison is now reduced

to a 3-level parallel comparison. What is more, part

of the candidate results of H1,2 can be shared with the

calculation of H1,1, so there is no redundant calculation

and comparison.

Figure 4: A 3×3 calculation cell using lookahead calculation

before and after optimization. The gray area represents the

input from other cells. Positions in the same color are

processed in the same cycle.

As mentioned before, in order to filter reads with too many

errors, we design a simple error counting mechanism for

counting different types of errors. Mistakes of each position
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inherit from its source of the score. Take H1,1 as an example:

• If the score of H1,1 equals H0,0+S(0, 0) where S(0, 0)
equals −2, mismatch errors of H1,1 will be added by

one on that of the input H0,0. The other two types of

errors are the same with those of H0,0.

• If the score of H1,1 equals H0,1 −W1 (H1,0 −W1),

the relative insertion (deletion) errors will be increased

by one from that of H0,1 (H1,0). The other two types

of error also inherit from H0,1 (H1,0).

Based on this mechanism, the number of errors is accumu-

lated along the path to the end of the cell, and the results

will be passed to other cells for the following rounds of

calculation.

Figure 5: The parallel comparison unit in the cell. The

framed part indicates the shared resources.

The 2-bit direction information of each position in the

3×3 matrix also needs to be stored for generating a direction

matrix in the PE (detailed in Section III-C).

C. Main Diagonal Band

The systolic array is often used in the hardware imple-

mentation of matrix multiplication. The method is simple in

structure, easy to control, and suitable for parallel computing

[15]. In this S-W application, different cells connect with

each other to construct the structure. Thirteen 3×3 cells are

sufficient to constitute a 36× 36 processing element (PE).

As depicted in Fig. 6, cells can be reused in different

cycles. Different cells in the anti-diagonal direction do the

scoring synchronously. After the scoring, 25 positions at

the end of the PE compose a “L” region. The index of the

maximum among the 25 scores is recorded, which implies

the beginning position of the backtracking.

To provide a diagonal band, there is a 12 × 12 overlap

between each two PEs. Furthermore, the band inside the PE

is constructed by expanding the “L” region from the end

to the beginning of the PE. All cells along this band need

to record the direction information to generate a direction

matrix. In this matrix, each “L” region takes up one row.

According to our direction record rule in Section II-C, each

row needs 50 bits, which means one matrix takes 50×24 =
1200 bits, 48% less than 2304 bits if all the positions are

stored. A buffer with 24 entries is employed to store the

matrix, with each entry storing the information of one 50-

bit “L” region, as shown in Fig. 7.

Figure 6: A 6-PE parallel structure and a 13-cell systolic

array structure. Positions in origin are in the diagonal band.

The blue line represents one round of cell calculation.

Only cells along the diagonal band record the direction

information because the filter module employing the error
counting mechanism ensures that the backtracking path is

bounded in the band. If the path goes beyond the region,

it means that in the current PE, the number of errors must

satisfy the inequality: |Insertion −Deletion| ≥ 12bps. It

indicates that the number of gap errors is no less than 12bps,

which exceeds the threshold of the filter that is set as 10 in

this system. Under this situation, the read is judged as a

low-quality candidate whose match accuracy does not meet

the requirement of S-W in WGS.

D. Backtracking Module
The backtracking step follows the scoring step. As the

volume of data surges largely, the traditional method of

sending the matrix to a general-purpose processor is likely

to encounter bandwidth issues. To mitigate this, we design a

backtracking module completely implemented on hardware,

which is called BTU, as shown in Fig. 7.
The BTU starts reading the direction matrix buffer as

soon as the scoring finishes. From the last entry to the

first, in each clock cycle, the BTU reads 2-bit direction

information at a specific location and then appends these

2 bits to the alignment path, which is later combined with

read and reference sequences to generate the final alignment

information.
In order to locate the 2-bit direction information, a pointer

of entry is used to select the row of the matrix, and a pointer

of position is to determine the specific column in that row.

At the beginning of the backtracking, the entry pointer is

initialized to 23, and the position pointer is initialized to

the index number of the maximum in the last “L” region.

These two pointers are updated in each cycle based on the

direction information that is read. At last, the backtracking

ends when the entry pointer is smaller than 0. Therefore,

the BTU spends 24-36 clock cycles to finish generating the

alignment path of one PE.

E. Two-Stage Pipeline Structure
A 6-PE structure is considered in this section. Our initial

design is that 6 PEs begin the scoring step synchronously,
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Figure 7: An “L” region, a direction matrix buffer, and the

general structure of the BTU.

followed by 6 BTUs running parallel to acquire the align-

ment information of different sequence segments. Unfortu-

nately, it is difficult to handle the problem of integrating the

results of different segments, so we turn to a strategy of

parallel scoring with serial backtracking: starting from the

last entry of the last PE’s direction matrix buffer, one BTU

serially backtracks a path along the diagonal band to the first

entry of the first PE’s buffer. However, this strategy causes

a waste of resources needed to instantiate the PE module

because after finishing the scoring, PEs in the front of the

structure are in the idle state when waiting for BTU to read

their matrix buffers.

In order to increase the reuse rate of the PE module while

keeping the total running time unchanged, we propose a two-
stage pipeline structure for the PE and BTU, where the

two stages represent the two steps of the algorithm: scoring

and backtracking. It only changes the timing between the

modules without modifying the logic implementation inside

them.

First, take a 2-PE structure as an example to elaborate

on this structure. Including time cost by the input stage of

each cell, it takes 80 clock cycles for one PE to finish the

scoring, and one BTU spends m cycles (24 ≤ m ≤ 36).

In the initial serial backtracking strategy, the 2-PE structure

spends 80 + 2m cycles running the algorithm. In this new

structure, the scoring of PE1 ends simultaneously with the

backtracking of PE0, which is implemented by delaying the

start time of PE1 by m cycles, as depicted in Fig. 8. It takes

80 + 2m clock cycles, same with the initial version.

For the 2-PE structure, the advantage of this structure

is not significant. However, as the length of the sequence

increases, the reuse rate of PE modules can be significantly

improved, and the resources saved are approaching 50%

(if the sequence is long enough). In a 6-PE structure, as

Fig. 8 shows, 3 PEs using a 2-stage pipeline structure are

sufficient to complete the algorithm. If m is no less than

Figure 8: The two-stage pipeline structure for S-W.

27, 3m cycles will be longer than 80 cycles cost by one

PE to finish the scoring. In this case it is noticeable that

PE0 is in the idle state when the fourth segment of the

sequence begins the scoring. Therefore, PE0 can be reused

to continue calculating this segment. PE1 and PE2 follow

the same technique, and the complete system saves up to a

half less PE’s instantiation than before, in the case of the

same total running time.

When it comes to determining the value of m, it depends

upon the number of errors in the sequence. The more gap

errors, the longer time the BTU costs. Since filtered low-

quality candidate reads have been filtered at the end of

the scoring step, in most cases, errors are distributed in

each segment. In this system, m is set as 27, the minimum

requirement for implementing the pipeline structure on a 6-

PE structure. What needs to be ensured is that when the BTU

begins backtracking, the direction matrix of the relative PE

has been generated, so there are likely to be a few cycles

wasted when the BTU and PE wait for each other. However,

it is acceptable compared with the resources saved in the

system.

IV. EXPERIMENTAL VALIDATION

A. Experiment Environment

Chisel HDL from UC Berkeley is employed to construct

the RTL code. We complete simulation and synthesis on

Vivado platform, using Xilinx Virtex-7 series FPGA.

B. Resource Consumption

In terms of resource consumption, in the cell, part of

the comparison results are shared among different positions

as mentioned in Section III-B, which reduces LUTs per

cell by 31.7%, from 918 to 627. Moreover, the two-stage

pipeline structure reduces the number of instantiated PE

by a half. Consequently, the system achieves a 58.4%

LUT consumption decrease, which means more sequence

alignments can be implemented to run parallel on a single

FPGA.

C. Circuit Performance

Reducing the length of the critical path is of great im-

portance to increase the circuit performance. In our work,

the main bottleneck exists in the lookahead calculation. We
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Table I: Usage of FPGA Resources

Resources Before Present Decrease

LUTs per cell 918 627 31.7%

LUTs per PE 15875 11956 24.7%

LUTs of System 98585 40985 58.4%

have balanced the critical path and improved the comparison

unit as mentioned in Section III-B. To further enhance it, we

delay part of the comparison of H1,2 and H2,1, and forward

part of the H3,3 to the second clock.

Table II: Property Overview

Property Value

Platform Virtex-7

Frequency 166.7Mhz

Throughput 720.9Mbps

Several typical S-W accelerators are listed in TABLE

III. The result has shown that our implementation can

achieve both high performance and low resource consump-

tion. Moreover, PipeBSW runs the algorithm entirely based

on FPGA, which is easier to implement.

Table III: Comparison Between Some Relative Works

Paper Backtrack
Freq

(Mhz)
LUTs Arch

Nawaz [9] Yes 79.3 - FPGA

Fei [15] Yes 150.0 57870 FPGA

Liao [16] Yes 125.0 70839 FPGA

Our Yes 166.7 40985 FPGA

V. PREVIOUS WORK

The first hardware banded S-W implementation was pro-

posed in [12], which accelerates the S-W for NCBI BLASTP

software. [16], [17] are two more classical accelerators based

on this idea. In [9] Nawaz et al pointed out the memory

bandwidth problem in the FPGA+CPU architecture, so he

chose to record the direction information and implement the

algorithm on FPGA. The most related work is [10]. Zhang

et al proposed SW core using the lookahead calculation.

However, the design of the SW core did not pay attention

to the critical path, and the whole system is only able to do

an evaluation. Observing the potential of this approach, we

continue to improve it to a new level. Compared with it, our

work has fully implemented the Smith-Waterman algorithm

without much performance loss and resource increase.

VI. CONCLUSION

This paper proposes PipeBSW, a re-configurable sys-

tem implementing the whole Smith-Waterman algorithm on

FPGA. We employ a lookahead calculation technique and

a two-stage pipeline structure on the hardware implemen-

tation, achieving a high degree of parallelism with low

resource consumption. The experiment results show that

PipeBSW’s throughput reaches 720.9Mbps and that there is

a 58.4% reduction in total LUT consumption. However, the

problem with PipeBSW is that it is only able to backtrack

one alignment path. We will be committed to handling this

defect in the future.
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