
Luyi	Li † , Jiayi Huang ‡ ,		Lang	Feng † ,		Zhongfeng Wang	†
†	Nanjing	University

‡University	of	California,	Santa	Barbara

PREFENDER:	A	Prefetching	Defender	against	
Cache	Side	Channel	Attacks	as	A	Pretender

Outline

2

I. Motivation

II. Background

III. PREFENDER Design

IV. Experimental Evaluation

• More	and	more	complex	devices	expose	them	to	larger	attack	surfaces
• Cloud	computing,	IoT,	etc.

• Increasing	threat	of	cache side channel attacks
• Vulnerabilities	in	hardware	design:	Spectre,	Meltdown, Foreshadow,	etc.

• Urgent	to	defeat	them	effectively	and	efficiently

Motivation

3

• Related	work
• Cache	isolation:	DAWG	from	MICRO2018
• Limit	speculation:	Conditional	Speculation	from	HPCA19
• Stateless	speculative buffer:	InvisiSpec from	MICRO2018
• Noise	injection:	Reuse-trap	from	DAC2020
• ...

• Trade-off	between	security	and	performance	in existing	methods

• Can	we	both	enforce	security	and	increase	performance?
• Insight:	Effective	prefetching	can	both	defend	against	attacks	and	save	execution	time.

Motivation

4

vs.
+?

Outline

5

I. Motivation

II. Background

III. PREFENDER	Design

IV. Experimental Evaluation

l Cache	Side	Channel	Attack
l Threat	Model
l Prefetching

• Side	channel	attack	is	to	extract	secrets from	information	
inadvertently	leaked	by	a	system
• Time,	Cache,	Power,	Electromagnetic,	etc.

• Cache	side	channel	attack
• Victim	leaves	side	channels	in	the	cache	while	running.
• Attacker	exploits	the	cache	side	channels	to	extract	secrets.

Cache	Side	Channel	Attack

6

Phase	1	:	The	attacker	
initializes	the	cache	state.	

Phase	2	:	The	victim	
accesses	the	cache	and	
changes	the	cache	state.	

Phase	3	:	The	attacker	
measures	the	change	to	
extract	the	victim’s	secret.

e.g.	A	typical	attack	flow

• Cache	timing	side	channel	attack
• Attacker	measures	the	cacheline access	latency	in	phase	3
• Flush+Reload,	Evict+Reload,	Prime+Probe,	etc.

• Example:	Flush	+ Reload
• Shared	memory	between	attacker	and	victim
• Instruction	support	for	cache	flush

Threat Model

7

Cache

Shared	data

• Cache	timing	side	channel	attack
• Attacker	measures	the	cacheline access	latency	in	phase	3
• Flush+Reload,	Evict+Reload,	Prime+Probe,	etc.

• Example:	Flush	+ Reload
• Step1:	Attacker	flushes	the	shared	memory	from	cache

Threat	Model

8

Cache

Eviction	cacheline:	
cachelines that	may	be	
accessed	by	the	victim

• Cache	timing	side	channel	attack
• Attacker	measures	the	cacheline access	latency	in	phase	3
• Flush+Reload,	Evict+Reload,	Prime+Probe,	etc.

• Example:	Flush	+ Reload
• Step1:	Attacker	flushes	the	shared	memory	from	cache
• Step2:	Victim accesses/does	not	access the	shared	memory

Threat	Model

9

Cache

Shared	data

• Cache	timing	side	channel	attack
• Attacker	measures	the	cacheline access	latency	in	phase	3
• Flush+Reload,	Evict+Reload,	Prime+Probe,	etc.

• Example:	Flush	+ Reload
• Step1:	Attacker	flushes	the	shared	memory	from	cache
• Step2:	Victim accesses/does	not	access the	shared	memory
• Step3:	Attacker	re-accesses	the	shared	memory

• Cache	hit	->	victim	accessed
• Cache	miss	->	victim	did	not	access

Threat	Model

10

Cache Hit!	

Cache

Example:	Spectre v1

11

• Attacker	maliciously	trains	branch	predictor	to	assume	‘ if ’	is	likely	true.

• Speculative	execution	allows	instructions	to	be	speculatively	executed	
before	the	branch	target	is	determined.

• Attacker	invokes	code	with	an	out-of-bounds x.
• x	=	(address	of	a	secret	byte	to	read)	−	(base	address	of	array1).

0: if (x < array1_size) {
1: y = array2[* 512];
2: }

e.g.	A	victim	code	snippet

array1[x]

Secret	is	brought	to	cache	
before	the	bound	check	

finishes	and	leaves	a	cache	
side	channel	!

Example:	Spectre v1

12

• Use	cache	side	channel	attack	to	extract	the	secret	

e.g.	A	Flush+Reload example

array2

......

0*512
1*512
2*512

n*512

.

Attacker
Flush

Victim
Access

Attacker
Reload

array2 array2 array2

Cache Hit!	
Secret	is	3!

0: if (x < array1_size) {
1: y = array2[* 512];
2: }

e.g.	A	victim	code	snippet

array1[x]

Secret	is	brought	to	cache	
before	the	bound	check	

finishes	and	leaves	a	cache	
side	channel	!

3*512

• To	reduce	cache	miss	rate	and	improve	performance
• Prefetch	data	into	cache	before	the	processor	requests	it.
• Hardware prefetchers:	Next-line Prefetcher,	Stride	Prefetcher,	etc.

Prefetching

13

Cache

Main	Memory

load r1, 0x0000_0000
load r2, 0x0000_0010

......
load r3, 0x0000_0020

0x0000_0000

Stride
Prefetching

0

1

2

3

4
5

.

0x0000_0010

Cache	Hit!

0x0000_0020

Outline

14

I. Motivation

II. Background

III. PREFENDER Design

IV. Experimental Evaluation

l Design	Insight
l Architecture	Overview
l Data	Scale	Tracker
l Access	Pattern	Tracker

• Observation	1
• Victim causes only	one	cache	state	
change	in	phase	2.

• Attacker	utilizes	the	only	one	change	to	
extract	secrets	in	phase	3.

Design	Insight

15

• Observation	2
• Prefetching	can	cause	extra	cache	
state	changes.

• Prefetching can	help	enhance	
performance based	on	accurate	
prediction.

Add	extra	state	changes	
to	confuse	attacker?

Design	prefetcher to	
both	enforce	security	and	
improve	performance?

Prefender

• Prefender:	L1 Data Prefetcher
• Data	scale	tracker	(DST)	to	interfere	with phase 2
• Access	pattern	tracker	(APT)	to	interfere	with phase	3
• Support for	basic	hardware	prefercher:	next-line prefetcher,	stride	prefetcher

Architecture	Overview

16

Controller

DST

APT

Prefender

Basic Pref.

Data Core_0

L1D L1I

Core_n-1

L1D L1I

L2

Memory

...

...

Data	Scale	Tracker

17

• Goal
• To predict the	eviction	cachelines during	
victim’s	execution

• Challenge
• In	phase	2,	victim	may	only	access	one	
secret-dependent	eviction	cacheline.

• Observation
• Victim	uses	indirect	memory	access	to	
load	eviction	cacheline.

• e.g. eviction[s * 128];

ØCalculation	History	Buffer
• To	track	how	the	load’s	target	address	is	
calculated.

Controller

DST

APT

Prefender

Basic Pref.

Data

Reg_0

Reg_1

Reg_n

...

DST	- Calculation	History	Buffer	

18

Reg_0

fvar scr

• To	track	how	the	load’s	target	address	is	calculated
• Record calculations	related	to	each	register
• Addition	(and	subtraction)	and	Multiplication	(and	shifting)

• Fixed	Value	(fvar)
• Record	immediate	value used	in	the	calculation	
history	of	register	r

• Scale	(scr)
• Record	scale	of	target	addr in register	r
e.g.	128	*	i ->		scale	is	128

• To	predict	the	cache	access	pattern

Reg_1

Reg_n

...

Track	scrwith	the	help	of	
fvar by	propagating	them	
from	source	registers	to	
destination	registers.

• Example
• Victim	accesses	array[secret * 0x200]
• Finally,	r0 = secret_addr, r5 = array + secret * 0x200

Data	Scale	Tracker

19

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r4, r2
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

fvar scr

r0

r1

r2

r3

r4

r5

• 1:	Load secret_addr to r0
• 2:	Load secret to r1

• In	data	movement	instructions,	scale	is	initialized	to	1.

Data	Scale	Tracker

20

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r4, r2
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

secret_addr NA 1

fvar scr

r0

secret NA 1r1

r2

r3

r4

r5

• 3:	Load array to r2
• 4: Load 0x200 to r3

• If	load	an	immediate	number,	set	the	fvar .

Data	Scale	Tracker

21

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r4, r2
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

secret_addr NA 1

fvar scr

r0

secret NA 1r1

array array 1r2

0x200 0x200 1r3

r4

r5

• 5:	Calculate	index	r4 = r1 * r3 (secret * 0x200)
• scr4 =	scr1 *	 fvar3

Data	Scale	Tracker

22

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r4, r2
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

secret_addr NA 1

fvar scr

r0

secret NA 1r1

array array 1r2

0x200 0x200 1r3

secret*0x200r4

r5

0x200NA

• 6: Calculate	target	address:	r5 = r2 + r4 (array + secret*0x200)
• fvar2 is	valid,	scr5 =	scr4

Data	Scale	Tracker

23

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r2, r4
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

secret_addr NA 1

fvar scr

r0

secret NA 1r1

array array 1r2

0x200 0x200 1r3

secret*0x200 NA 0x200r4

array+secret*0x200r5 0x200NA

• 7: Load	array[secret * 0x200] to r6
• scr5 (0x200)	>	cacheline size	(0x40	in	the	example)	!	Do	data	prefetching!
• Candidate	address:	r5 + 0x200, r5 - 0x200 (prefetch	data	not	in	the	cache).

Data	Scale	Tracker

24

1: load r0, 4(sp)
2: load r1, 0(r0)
3: load r2, array
4: load r3, 0x200
5: mul r4, r1, r3
6: add r5, r2, r4
7: load r6, 0(r5)
...

e.g.	A	victim	assembly	code	snippet

secret_addr NA 1

fvar scr

r0

secret NA 1r1

array array 1r2

0x200 0x200 1r3

secret*0x200 NA 0x200r4

array+secret*0x200 NA 0x200r5

• More	complicated	access	pattern	can	also	be	handled
• 128 * i +	32 * j	+	imm,	(128i0i1i2 + 32j0 *	16j1) *	(48k0 + imm),	etc.
• More	analyses	in	the	paper

Data	Scale	Tracker

25Table1:	Rules	to	calculate	fvard and	scrd .

• Goal
• To predict the	access	patterns	of	attacker	
during	its	measurement

• Challenge
• In	phase	3,	attacker	randomly measures	
the	latency	to	bypass	prefetcher.

• Observation
• Random	accesses	are	associated	with	only	
a	few	load	instructions.

ØAccess	trace	buffer
• Instruction-level	granularity	to	detect	
attacks

Access	Pattern	Tracker

26

Controller

DST

APT

Prefender

Basic Pref.

Data

Access Trace Buffer

······ ······ ······

...

Inst_0 Inst_1 Inst_n

• Instruction-level	granularity	to	detect	attacks
• Each	buffer	is	associated	with	one	load	instruction

• InstAddr register
• Record	instruction	address of	its	associated	load

• Buffer	entry
• Record	block	address accessed	by	the	load

• DiffMin register
• Record	minimum	difference between	two	block	
addresses	among	all	the	entries

APT	- Access	Trace	Buffer

27

InstAddr
DiffMin

Valid

Buffer
Entry

Access	Trace	Buffer

Access	Pattern	Tracker

28

DiffMin

Buffer
Entry

0

0

0

0

0

· ···

0

0

0

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• Example
• 0x8008 load: Randomly load array2[array1[x] * 0x200]
• 0x8018 load: Sequentially load safe_array[i]

Buffer[0]	(Occupied) Buffer[1]	(Empty)

e.g.	An	attacker	assembly	code	snippet

Access	Pattern	Tracker

29

DiffMin

Buffer
Entry

0

0

0

0

0

· ···

0

1 0x8008

0

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ① Buffer allocation
• Allocate	an	empty	buffer.

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

30

DiffMin

Buffer
Entry

1 0x1000

0

0

0

0

· ···

0

1 0x8008

0

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ② Entry updating
• If	not	recorded,	store	the	block	address	(BlkAddr)	in	a	new	entry. 0x1000

···
0x2800
0x1200

0x1000
Cachelines

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

31

DiffMin

Buffer
Entry

1 0x1000

0

0

0

0

· ···

0

1 0x8008

0

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

0x1000
···

0x2800
0x1200

• ① Buffer allocation
• Find	the	associated	buffer	and	activate	it.

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

32

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

0

· ···

0

1 0x8008

0

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ② Entry updating
• If	not	recorded,	store	the	block	address	(BlkAddr)	in	a	new	entry.
• If	all	entries	are	valid,	use	LRU	to	replace.

0x1000
···

0x2800
0x1200

0x1600 0x2000 0x2800Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

33

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

0

· ···

0

1 0x8008

1 0x600

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ③ DiffMin updating
• If	the	number	valid	entries	reaches	a	threshold	(4	in	the	example),
calculate	DiffMin.

0x1000
···

0x2800
0x1200

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

34

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

1 0x1200

· ···

0

1 0x8008

1 0x600 0x200

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ③ DiffMin updating
• If	the	number	valid	entries	surpasses	a	threshold	(4	in	the	example),
update	DiffMin each	time	the	buffer	is	activated.

0x1000
···

0x2800
0x1200

0x1200Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

35

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

1 0x1200

· ···

0

1 0x8008

1 0x200

0x8008: load r1, 0(r10)
······

0x8018: load r3, 0(r11)

1 0xA000

1 0xA100

1 0xA200

1 0xA300

1 0xA400

· ···

1 ···

1 0x8000

1 0x100

InstAddr

• ④ Data	prefetching
• If	the	number	valid	entries	surpasses	a	threshold,	do	prefetching!
• Candidate	address:	BlkAddr +	DiffMin,	BlkAddr - Diffmin (prefetch	data	
not	in	the	cache).

0x1000
···

0x2800
0x1200

0x1000 in	cache!		Prefetch	0x1400Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

36

0x8018: load r3, 0(r11)
······
······

• ① Buffer allocation
• If	all	buffers	are	occupied,	use	LRU	to	select	a	buffer.	

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

1 0x1200

· ···

0

1 0x8008

1 0x200

0

0

0

0

0

· ···

0

1 0x8000 0x8018

0

InstAddr

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Access	Pattern	Tracker

37

0x8018: load r3, 0(r11)
······
······

• ② Entry updating
• ③ DiffMin updating
• ④ Data	prefetching
• ①②③④,	①②③④,	①②③④……

0x1500
0x1501
0x1502
···

DiffMin

Buffer
Entry

1 0x1000

1 0x2000

1 0x1600

1 0x2800

1 0x1200

· ···

0

1 0x8008

1 0x200

1 0x1500

1 0x1501

1 0x1502

1 0x1503

1 0x1504

· ···

1 ···

1 0x8018

1 0x1

InstAddr

Buffer[0]	(Occupied) Buffer[1]	(Occupied)

Outline

38

I. Motivation

II. Background

III. PREFENDER Design

IV. Experimental Evaluation

l Security Evaluation
l Performance	Evaluation

• Tools
• Gem5	simulator

• Configuration
• System	call	emulation	(SE) mode
• x86	O3	core	at	2GHz
• 32KB	2-way	L1ICache,	64KB	2-way	L1DCache,	2MB	8-way	L2Cache

• Testbench
• Security:	Spectre v1	(Flush+Reload,	Evict+Reload,	Prime+Probe)
• Performance:	SPEC	CPU	2006	benchmark

Methodology

39

• Spectre v1	(Flush	+	Reload)

Security	Evaluation

40

0

200

400

50 70 90 11065

Secret	=	‘A’

Array	Index

La
te
nc
y	
(C
yc
le
) Hit	Threshold

Base
Prefender – DST
Prefender – APT
Prefender

So	many	cache	hits	…
Which	is	the	secret	???

• Spectre v1	(Evict	+	Reload)

Security	Evaluation

41

0

200

400

50 70 90 11065
Array	Index

La
te
nc
y	
(C
yc
le
) Hit	Threshold

Base
Prefender – DST
Prefender – APT
Prefender

Secret	=	‘A’

So	many	cache	hits	…
Fail	again	!!!

• Spectre v1	(Prime	+	Probe)

Security	Evaluation

42

0

200

50 70 90 11065

Secret	=	‘A’

Array	Index

La
te
nc
y	
(C
yc
le
) Hit	Threshold

Base
Prefender – DST
Prefender – APT
Prefender

No	cache	miss	???
Prefender beats	me	!!!

Performance	Evaluation

43

0.95

1

1.05

1.1

1.15

1.2

pe
rlb
en
ch

bz
ip2 mc

f

go
bm
k

hm
me
r

sje
ng

lib
qu
an
tum

h2
64
ref

om
ne
tpp ast

ar

xa
lan
cb
mk

sp
ecr
an
d

Av
g.

Base Stride	Prefetcher Prefender Prefender	(With	Stride	Prefetcher)

• More	cases	in	the	paper

+3.8%

• SPEC	CPU	2006
• APT:	32	buffers,	8	entries

Sp
ee

du
p

Cache	Miss	Rate	Evaluation

44
• More	cases	in	the	paper

• SPEC	CPU	2006
• APT:	32	buffers,	8	entries

N
or

m
al

iz
ed

 C
ac

he
 M

is
s R

at
e

0.3

0.5

0.7

0.9

1.1

1.3

1.5

pe
rlb
en
ch

bz
ip2 mc

f

go
bm
k

hm
me
r

sje
ng

lib
qu
an
tum

h2
64
ref

om
ne
tpp ast

ar

xa
lan
cb
mk

sp
ecr
an
d

Av
g.

Base Stride	Prefetcher Prefender Prefender	(With	Stride	Prefetcher)

Hardware	Resource	Consumption	Analysis

45

• Data	Scale	Tracker
• Assumption:

• The	prefetching	is	performed	within	one	page
• Page	size	is	<	64KB,	and	each	core	has	<	100	registers
• Therefore,	16	bits	are	enough	for	each	fixed	value	(fva)	and	each	scale	(sc)

• Memory: <	16*2*100/8	Bytes,	which	is	<	400	Bytes
• Datapath: A	16-bit	adder,	a	16-bit	multiplier,	and	a	16-bit	comparator

• Access	Pattern	Tracker
• Assumption:

• In	Access	Trace	Buffer,	each	entry,	InstAddr,	DiffMin,	and	the	time	for	LRU	are	64-bit
• The	target	is	to	prefetch	eviction	cachelines,	and	the	size	of	L1Dcache	<	1MB
• Therefore,	20	bits	are	enough	for	the	calculation
• There	are	32	Access	Trace	Buffers,	each	of	which	has	8	entries

• Memory: <	64*(8+3)*32/8	Bytes,	which	is	<	2816	Bytes
• Datapath: Several	20-bit	comparators and	20-bit	subtractors for	each	buffer

• Propose a	secure	prefetcher,	which	is	able	to	defeat	cache	side	channel	
attackswhile	maintaining	or	even	improving	performance.

• Design	Data	Scale	Tracker	(DST) to	predict	the	eviction	cachelines during	
the	victim’s	execution.

• Design	Access	Pattern	Tracker	(APT)	to	predict	the	access	patterns	
during	the	attacker’s	measurement.

• Prove	the	defense	effectiveness	for	Spectre and	achieve	a	speedup	for	
SPEC	CPU	2006	benchmark.

Conclusion

46

47

Thanks	for	Listening!
If	You	Have	Any	Question,	Please	Contact	Us	at

luyli@smail.nju.edu.com
flang@nju.edu.cn

